{"title":"Partially Dissipative Viscous System of Balance Laws and Application to Kuznetsov–Westervelt Equation","authors":"Gilbert Peralta","doi":"10.1007/s10440-024-00686-7","DOIUrl":null,"url":null,"abstract":"<div><p>We provide the well-posedness for a partially dissipative viscous system of balance laws in smooth Sobolev spaces under the same assumptions as in the case of inviscid balance laws. A priori estimates for coupled hyperbolic-parabolic linear systems with coefficients having limited regularity are derived using Friedrichs regularization and Moser-type estimates. Local existence for nonlinear systems will be established using the results of the linear theory and a suitable iteration scheme. The local existence theory is then applied to the Kuznetsov–Westervelt equation with damping for nonlinear wave acoustic propagation. Existence of global solutions for small data and their asymptotic stability are established.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"193 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00686-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We provide the well-posedness for a partially dissipative viscous system of balance laws in smooth Sobolev spaces under the same assumptions as in the case of inviscid balance laws. A priori estimates for coupled hyperbolic-parabolic linear systems with coefficients having limited regularity are derived using Friedrichs regularization and Moser-type estimates. Local existence for nonlinear systems will be established using the results of the linear theory and a suitable iteration scheme. The local existence theory is then applied to the Kuznetsov–Westervelt equation with damping for nonlinear wave acoustic propagation. Existence of global solutions for small data and their asymptotic stability are established.
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.