Convex geometries representable with colors, by ellipses on the plane, and impossible by circles

IF 0.5 Q3 MATHEMATICS
Kira Adaricheva, Evan Daisy, Ayush Garg, Grace Ma, Michelle Olson, Cat Raanes, James Thompson
{"title":"Convex geometries representable with colors, by ellipses on the plane, and impossible by circles","authors":"Kira Adaricheva,&nbsp;Evan Daisy,&nbsp;Ayush Garg,&nbsp;Grace Ma,&nbsp;Michelle Olson,&nbsp;Cat Raanes,&nbsp;James Thompson","doi":"10.1007/s44146-024-00112-2","DOIUrl":null,"url":null,"abstract":"<div><p>A convex geometry is a closure system satisfying the anti-exchange property. This paper, following the work of Adaricheva and Bolat (Discrete Math 342(N3):726–746, 2019) and the Polymath REU 2020 team (Convex geometries representable by at most 5 circles on the plane. arXiv:2008.13077), continues to investigate representations of convex geometries on a 5-element base set. It introduces several properties: the opposite property, nested triangle property, area Q property, and separation property, of convex geometries of circles on a plane, preventing this representation for numerous convex geometries on a 5-element base set. It also demonstrates that all 672 convex geometries on a 5-element base set have a representation by ellipses, as given in the appendix for those without a known representation by circles, and introduces a method of expanding representation with circles by defining unary predicates, shown as colors.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"90 1-2","pages":"269 - 322"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-024-00112-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00112-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A convex geometry is a closure system satisfying the anti-exchange property. This paper, following the work of Adaricheva and Bolat (Discrete Math 342(N3):726–746, 2019) and the Polymath REU 2020 team (Convex geometries representable by at most 5 circles on the plane. arXiv:2008.13077), continues to investigate representations of convex geometries on a 5-element base set. It introduces several properties: the opposite property, nested triangle property, area Q property, and separation property, of convex geometries of circles on a plane, preventing this representation for numerous convex geometries on a 5-element base set. It also demonstrates that all 672 convex geometries on a 5-element base set have a representation by ellipses, as given in the appendix for those without a known representation by circles, and introduces a method of expanding representation with circles by defining unary predicates, shown as colors.

用颜色、平面上的椭圆和不可能用圆表示的凸面几何图形
凸几何是满足反交换性质的闭合系统。本文是继 Adaricheva 和 Bolat(《离散数学》342(N3):726-746, 2019)以及 Polymath REU 2020 团队(《平面上最多由 5 个圆表示的凸几何》。arXiv:2008.13077)的工作之后,继续研究凸几何在 5 元基集上的表示。它介绍了平面上圆的凸几何图形的几个性质:相反性质、嵌套三角形性质、面积 Q 性质和分离性质,从而防止了 5 元素基集上无数凸几何图形的这种表示。它还证明了 5 元素基集上的所有 672 个凸几何图形都有椭圆表示,附录中给出了那些没有已知圆表示的凸几何图形,并介绍了一种通过定义一元谓词来扩展圆表示的方法,用颜色表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信