Riemann–Hilbert approach to coupled nonlinear Schrödinger equations on a half-line

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Shun Wang, Jian Li
{"title":"Riemann–Hilbert approach to coupled nonlinear Schrödinger equations on a half-line","authors":"Shun Wang,&nbsp;Jian Li","doi":"10.1134/S004057792409006X","DOIUrl":null,"url":null,"abstract":"<p> We use the Fokas method to investigate coupled derivative nonlinear Schrödinger equations on a half-line. The solutions are represented in terms of solutions of two matrix Riemann–Hilbert problems (RHPs) formulated in the complex plane of the spectral parameter. The elements of jump matrices are composed of spectral functions and are derived from the initial and boundary values. The spectral functions are not independent of each other, but satisfy a compatibility condition, the so-called global condition. Therefore, if the initial boundary and values and the defined spectral functions satisfy the global condition, the RHP is solvable and hence the derivative nonlinear Schrödinger equations on a half-line are solvable. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"220 3","pages":"1496 - 1514"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S004057792409006X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We use the Fokas method to investigate coupled derivative nonlinear Schrödinger equations on a half-line. The solutions are represented in terms of solutions of two matrix Riemann–Hilbert problems (RHPs) formulated in the complex plane of the spectral parameter. The elements of jump matrices are composed of spectral functions and are derived from the initial and boundary values. The spectral functions are not independent of each other, but satisfy a compatibility condition, the so-called global condition. Therefore, if the initial boundary and values and the defined spectral functions satisfy the global condition, the RHP is solvable and hence the derivative nonlinear Schrödinger equations on a half-line are solvable.

半线上耦合非线性薛定谔方程的黎曼-希尔伯特方法
我们使用福卡斯方法研究半线上的耦合导数非线性薛定谔方程。解用在谱参数的复平面上制定的两个矩阵黎曼-希尔伯特问题(Riemann-Hilbert)的解来表示。跃迁矩阵的元素由谱函数组成,并由初值和边界值导出。谱函数并非相互独立,而是满足一个相容条件,即所谓的全局条件。因此,如果初始边界和边界值以及定义的谱函数满足全局条件,则 RHP 是可解的,因此半线上的导数非线性薛定谔方程也是可解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信