{"title":"Boundedness-below conditions for a general scalar potential of two real scalar fields and the Higgs boson","authors":"Yisheng Song, Liqun Qi","doi":"10.1134/S0040577924090101","DOIUrl":null,"url":null,"abstract":"<p> The most general scalar potential of two real scalar fields and a Higgs boson is a quartic homogeneous polynomial in three variables, which defines a <span>\\(4\\)</span>th-order three-dimensional symmetric tensor. Hence, the boundedness of such a scalar potential from below involves the positive (semi-)definiteness of the corresponding tensor. In this paper, we therefore mainly discuss analytic expressions of positive (semi-)definiteness for such a special tensor. First, an analytically necessary and sufficient condition is given to test the positive (semi-)definiteness of a <span>\\(4\\)</span>th-order two-dimensional symmetric tensor. Furthermore, by means of such a result, the analytic necessary and sufficient conditions of the boundedness from below are obtained for a general scalar potential of two real scalar fields and the Higgs boson. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"220 3","pages":"1567 - 1579"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924090101","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The most general scalar potential of two real scalar fields and a Higgs boson is a quartic homogeneous polynomial in three variables, which defines a \(4\)th-order three-dimensional symmetric tensor. Hence, the boundedness of such a scalar potential from below involves the positive (semi-)definiteness of the corresponding tensor. In this paper, we therefore mainly discuss analytic expressions of positive (semi-)definiteness for such a special tensor. First, an analytically necessary and sufficient condition is given to test the positive (semi-)definiteness of a \(4\)th-order two-dimensional symmetric tensor. Furthermore, by means of such a result, the analytic necessary and sufficient conditions of the boundedness from below are obtained for a general scalar potential of two real scalar fields and the Higgs boson.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.