Variational autoencoder-based techniques for a streamlined cross-topology modeling and optimization workflow in electrical drives

Marius Benkert, Michael Heroth, Rainer Herrler, Magda Gregorová, Helmut C. Schmid
{"title":"Variational autoencoder-based techniques for a streamlined cross-topology modeling and optimization workflow in electrical drives","authors":"Marius Benkert,&nbsp;Michael Heroth,&nbsp;Rainer Herrler,&nbsp;Magda Gregorová,&nbsp;Helmut C. Schmid","doi":"10.1007/s43684-024-00065-x","DOIUrl":null,"url":null,"abstract":"<div><p>The generation and optimization of simulation data for electrical machines remain challenging, largely due to the complexities of magneto-static finite element analysis. Traditional methodologies are not only resource-intensive, but also time-consuming. Deep learning models can be used to shortcut these calculations. However, challenges arise when considering the unique parameter sets specific to each machine topology. Building on two recent studies (Parekh et al. in IEEE Trans. Magn. 58(9):1–4, 2022; Parekh et al., Deep learning based meta-modeling for multi-objective technology optimization of electrical machines, 2023, arXiv:2306.09087), that utilized a variational autoencoder to cohesively map diverse topologies into a singular latent space for subsequent optimization, this paper proposes a refined architecture and optimization workflow. Our modifications aim to streamline and enhance the robustness of both the training and optimization processes, and compare the results with the variational autoencoder architecture proposed recently.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00065-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-024-00065-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The generation and optimization of simulation data for electrical machines remain challenging, largely due to the complexities of magneto-static finite element analysis. Traditional methodologies are not only resource-intensive, but also time-consuming. Deep learning models can be used to shortcut these calculations. However, challenges arise when considering the unique parameter sets specific to each machine topology. Building on two recent studies (Parekh et al. in IEEE Trans. Magn. 58(9):1–4, 2022; Parekh et al., Deep learning based meta-modeling for multi-objective technology optimization of electrical machines, 2023, arXiv:2306.09087), that utilized a variational autoencoder to cohesively map diverse topologies into a singular latent space for subsequent optimization, this paper proposes a refined architecture and optimization workflow. Our modifications aim to streamline and enhance the robustness of both the training and optimization processes, and compare the results with the variational autoencoder architecture proposed recently.

基于变分自动编码器的技术,用于简化电气传动中的跨拓扑建模和优化工作流程
主要由于磁静有限元分析的复杂性,电机仿真数据的生成和优化仍具有挑战性。传统方法不仅资源密集,而且耗时。深度学习模型可用于缩短这些计算的时间。然而,当考虑到每个机器拓扑结构特有的参数集时,挑战就出现了。基于最近的两项研究(Parekh 等人在 IEEE Trans.Magn.58(9):1-4, 2022; Parekh et al., Deep learning based meta-modeling for multi-objective technology optimization of electrical machines, 2023, arXiv:2306.09087)的基础上,本文提出了一种完善的架构和优化工作流程。我们的修改旨在简化和增强训练与优化过程的鲁棒性,并将结果与最近提出的变异自动编码器架构进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信