Local existence and blow up for the wave equation with nonlinear logarithmic source term and nonlinear dynamical boundary conditions combined with distributed delay

IF 0.9 Q2 MATHEMATICS
Abdelbaki Choucha, Salah Boulaaras, Mohammad Alnegga
{"title":"Local existence and blow up for the wave equation with nonlinear logarithmic source term and nonlinear dynamical boundary conditions combined with distributed delay","authors":"Abdelbaki Choucha,&nbsp;Salah Boulaaras,&nbsp;Mohammad Alnegga","doi":"10.1007/s13370-024-01212-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we highlight a type of hyperbolic equation relating the logarithmic source term with distributed delay and dynamic boundary condition. We get, under comfortable primary data is the weak solution to local existence. The results of the solutions were found using the Faydo–Galerkin method and Schoder’s fixed point theorem. Then, the minimum blow-up result was studied. Our work is an extension of some previous work.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01212-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we highlight a type of hyperbolic equation relating the logarithmic source term with distributed delay and dynamic boundary condition. We get, under comfortable primary data is the weak solution to local existence. The results of the solutions were found using the Faydo–Galerkin method and Schoder’s fixed point theorem. Then, the minimum blow-up result was studied. Our work is an extension of some previous work.

带有非线性对数源项和非线性动力学边界条件的波方程的局部存在性和炸毁,以及分布式延迟
在本文中,我们重点讨论了一种与对数源项、分布式延迟和动态边界条件有关的双曲方程。在舒适的主数据条件下,我们得到了局部存在的弱解。利用 Faydo-Galerkin 方法和 Schoder 定点定理找到了解的结果。然后,研究了最小吹胀结果。我们的工作是对之前一些工作的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信