Violent Nonlinear Collapse in the Interior of Charged Hairy Black Holes

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Maxime Van de Moortel
{"title":"Violent Nonlinear Collapse in the Interior of Charged Hairy Black Holes","authors":"Maxime Van de Moortel","doi":"10.1007/s00205-024-02038-z","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a new one-parameter family, indexed by <span>\\(\\epsilon \\)</span>, of two-ended, spatially-homogeneous black hole interiors solving the Einstein–Maxwell–Klein–Gordon equations with a (possibly zero) cosmological constant <span>\\(\\Lambda \\)</span> and bifurcating off a Reissner–Nordström-(dS/AdS) interior (<span>\\(\\epsilon =0\\)</span>). For all small <span>\\(\\epsilon \\ne 0\\)</span>, we prove that, although the black hole is charged, its terminal boundary is an everywhere-<i>spacelike</i> Kasner singularity foliated by spheres of zero radius <i>r</i>. Moreover, smaller perturbations (i.e. smaller <span>\\(|\\epsilon |\\)</span>) are <i>more singular than larger ones</i>, in the sense that the Hawking mass and the curvature blow up following a power law of the form <span>\\(r^{-O(\\epsilon ^{-2})}\\)</span> at the singularity <span>\\(\\{r=0\\}\\)</span>. This unusual property originates from a dynamical phenomenon—<i>violent nonlinear collapse</i>—caused by the almost formation of a Cauchy horizon to the past of the spacelike singularity <span>\\(\\{r=0\\}\\)</span>. This phenomenon was previously described numerically in the physics literature and referred to as “the collapse of the Einstein–Rosen bridge”. While we cover all values of <span>\\(\\Lambda \\in \\mathbb {R}\\)</span>, the case <span>\\(\\Lambda &lt;0\\)</span> is of particular significance to the AdS/CFT correspondence. Our result can also be viewed in general as a first step towards the understanding of the interior of hairy black holes.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02038-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02038-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a new one-parameter family, indexed by \(\epsilon \), of two-ended, spatially-homogeneous black hole interiors solving the Einstein–Maxwell–Klein–Gordon equations with a (possibly zero) cosmological constant \(\Lambda \) and bifurcating off a Reissner–Nordström-(dS/AdS) interior (\(\epsilon =0\)). For all small \(\epsilon \ne 0\), we prove that, although the black hole is charged, its terminal boundary is an everywhere-spacelike Kasner singularity foliated by spheres of zero radius r. Moreover, smaller perturbations (i.e. smaller \(|\epsilon |\)) are more singular than larger ones, in the sense that the Hawking mass and the curvature blow up following a power law of the form \(r^{-O(\epsilon ^{-2})}\) at the singularity \(\{r=0\}\). This unusual property originates from a dynamical phenomenon—violent nonlinear collapse—caused by the almost formation of a Cauchy horizon to the past of the spacelike singularity \(\{r=0\}\). This phenomenon was previously described numerically in the physics literature and referred to as “the collapse of the Einstein–Rosen bridge”. While we cover all values of \(\Lambda \in \mathbb {R}\), the case \(\Lambda <0\) is of particular significance to the AdS/CFT correspondence. Our result can also be viewed in general as a first step towards the understanding of the interior of hairy black holes.

带电毛状黑洞内部的暴力非线性坍缩
我们构建了一个新的一参数族,以 \(\epsilon \)为索引,包含两端、空间均质的黑洞内部,求解具有宇宙学常数(可能为零)的爱因斯坦-麦克斯韦-克莱因-戈登方程(Einstein-Maxwell-Klein-Gordon equations),并从赖斯纳-诺德斯特伦(Reissner-Nordström-(dS/AdS)内部分叉(\(\epsilon =0\))。对于所有小的\(\epsilon \ne 0\), 我们证明,尽管黑洞是带电的,但它的终端边界是一个由半径为零的球面叶状构成的无处不在的类空间卡斯纳奇点。(r^{-O(\epsilon ^{-2})}\)奇点处的霍金质量和曲率按照幂律形式\(r^{-O(\epsilon ^{-2})}\)膨胀。这种不寻常的性质源于一种动力学现象--暴力非线性坍缩--它是由于在空间奇点((\{r=0\})的过去几乎形成了一个考奇视界(Cauchy horizon)而引起的。这种现象以前在物理学文献中被数值描述为 "爱因斯坦-罗森桥的坍塌"。虽然我们涵盖了 \(\Lambda \in \mathbb {R}/)的所有值,但 \(\Lambda <0\) 的情况对于AdS/CFT对应关系具有特别重要的意义。我们的结果也可以被看作是理解毛状黑洞内部的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信