Weighted numerical radius inequalities for operator and operator matrices

IF 0.5 Q3 MATHEMATICS
Raj Kumar Nayak
{"title":"Weighted numerical radius inequalities for operator and operator matrices","authors":"Raj Kumar Nayak","doi":"10.1007/s44146-023-00103-9","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of weighted numerical radius has been defined recently. In this article, we obtain several upper bounds for the weighted numerical radius of operators and <span>\\(2 \\times 2\\)</span> operator matrices which generalize and improve some well-known famous inequalities for the classical numerical radius. The article also derives an upper bound for the weighted numerical radius of the Aluthge transformation, <span>\\({\\tilde{T}}\\)</span> of an operator <span>\\(T \\in {\\mathcal {B}}({\\mathcal {H}}),\\)</span> where <span>\\({\\tilde{T}} = |T|^{1/2} U |T|^{1/2},\\)</span> and <span>\\(T = U |T|\\)</span> is the Canonical Polar decomposition of <i>T</i>.\n</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"90 1-2","pages":"193 - 206"},"PeriodicalIF":0.5000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00103-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of weighted numerical radius has been defined recently. In this article, we obtain several upper bounds for the weighted numerical radius of operators and \(2 \times 2\) operator matrices which generalize and improve some well-known famous inequalities for the classical numerical radius. The article also derives an upper bound for the weighted numerical radius of the Aluthge transformation, \({\tilde{T}}\) of an operator \(T \in {\mathcal {B}}({\mathcal {H}}),\) where \({\tilde{T}} = |T|^{1/2} U |T|^{1/2},\) and \(T = U |T|\) is the Canonical Polar decomposition of T.

算子和算子矩阵的加权数值半径不等式
加权数值半径的概念是最近定义的。在这篇文章中,我们得到了算子和 \(2 \times 2\) 算子矩阵的加权数值半径的几个上界,它们概括并改进了经典数值半径的一些著名不等式。文章还推导了算子 \(T \in {\mathcal {B}}({\mathcal {H}}),\) 的 Aluthge 变换、\({\tilde{T}}\) 的加权数值半径的上界,其中 \({\tilde{T}} = |T|^{1/2} U |T|^{1/2},\) 和 \(T = U |T|) 是 T 的 Canonical Polar 分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信