Hamilton–Jacobi–Bellman Approach for Optimal Control Problems of Sweeping Processes

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Cristopher Hermosilla, Michele Palladino, Emilio Vilches
{"title":"Hamilton–Jacobi–Bellman Approach for Optimal Control Problems of Sweeping Processes","authors":"Cristopher Hermosilla,&nbsp;Michele Palladino,&nbsp;Emilio Vilches","doi":"10.1007/s00245-024-10174-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with a state constrained optimal control problem governed by a Moreau’s sweeping process with a controlled drift. The focus of this work is on the Bellman approach for an infinite horizon problem. In particular, we focus on the regularity of the value function and on the Hamilton–Jacobi–Bellman equation it satisfies. We discuss a uniqueness result and we make a comparison with standard state constrained optimal control problems to highlight a regularizing effect that the sweeping process induces on the value function.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"90 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10174-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with a state constrained optimal control problem governed by a Moreau’s sweeping process with a controlled drift. The focus of this work is on the Bellman approach for an infinite horizon problem. In particular, we focus on the regularity of the value function and on the Hamilton–Jacobi–Bellman equation it satisfies. We discuss a uniqueness result and we make a comparison with standard state constrained optimal control problems to highlight a regularizing effect that the sweeping process induces on the value function.

扫频过程最优控制问题的汉密尔顿-雅各比-贝尔曼方法
本文关注的是一个受状态约束的最优控制问题,该问题由一个具有可控漂移的莫罗扫频过程所控制。这项工作的重点是无限视界问题的贝尔曼方法。我们尤其关注值函数的正则性及其满足的汉密尔顿-雅各比-贝尔曼方程。我们讨论了一个唯一性结果,并与标准状态约束最优控制问题进行了比较,以突出扫频过程对价值函数的正则效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信