Enhancing Offline Signature Verification via Transfer Learning and Deep Neural Networks

S. Singh, S. Chandra, Agya Ram Verma
{"title":"Enhancing Offline Signature Verification via Transfer Learning and Deep Neural Networks","authors":"S. Singh,&nbsp;S. Chandra,&nbsp;Agya Ram Verma","doi":"10.1007/s41133-024-00069-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a brief overview of signature identification and verification systems based on transfer learning. Different databases, namely CEDAR, ICDAR-2011, and BHSig260, are utilized for this study. In the field of biometrics and forensics, automated signature verification plays a crucial role in validating a person’s authenticity. The signature can be offline (handwritten) or online (digital). This study mainly focuses on offline signatures forged by the skilled forgers because offline systems lack dynamic information such as pressure and velocity available in online systems. The offline signatures are analyzed on pretrained models, and their efficiency is analyzed on two critical metrics in the field of biometrics and security systems, namely false acceptance rate (FAR) and false rejection rate (FRR). InceptionV3 model gives highest accuracy of 99.10% and lowest FRR and FAR of 1.03% and 0.74%.</p></div>","PeriodicalId":100147,"journal":{"name":"Augmented Human Research","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Augmented Human Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41133-024-00069-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a brief overview of signature identification and verification systems based on transfer learning. Different databases, namely CEDAR, ICDAR-2011, and BHSig260, are utilized for this study. In the field of biometrics and forensics, automated signature verification plays a crucial role in validating a person’s authenticity. The signature can be offline (handwritten) or online (digital). This study mainly focuses on offline signatures forged by the skilled forgers because offline systems lack dynamic information such as pressure and velocity available in online systems. The offline signatures are analyzed on pretrained models, and their efficiency is analyzed on two critical metrics in the field of biometrics and security systems, namely false acceptance rate (FAR) and false rejection rate (FRR). InceptionV3 model gives highest accuracy of 99.10% and lowest FRR and FAR of 1.03% and 0.74%.

通过迁移学习和深度神经网络加强离线签名验证
本文简要介绍了基于迁移学习的签名识别和验证系统。本研究使用了不同的数据库,即 CEDAR、ICDAR-2011 和 BHSig260。在生物识别和取证领域,自动签名验证在验证一个人的真实性方面起着至关重要的作用。签名可以是离线签名(手写签名),也可以是在线签名(数字签名)。本研究主要关注熟练的伪造者伪造的离线签名,因为离线系统缺乏动态信息,如压力和速度,而在线系统则具备这些信息。离线签名通过预训练模型进行分析,并根据生物识别和安全系统领域的两个关键指标,即错误接受率(FAR)和错误拒绝率(FRR),分析其效率。InceptionV3 模型的准确率最高,达到 99.10%,FRR 和 FAR 最低,分别为 1.03% 和 0.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信