On a Traveling Salesman Problem for Points in the Unit Cube

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
József Balogh, Felix Christian Clemen, Adrian Dumitrescu
{"title":"On a Traveling Salesman Problem for Points in the Unit Cube","authors":"József Balogh,&nbsp;Felix Christian Clemen,&nbsp;Adrian Dumitrescu","doi":"10.1007/s00453-024-01257-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be an <i>n</i>-element point set in the <i>k</i>-dimensional unit cube <span>\\([0,1]^k\\)</span> where <span>\\(k \\ge 2\\)</span>. According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour) <span>\\(x_1, x_2, \\ldots , x_n\\)</span> through the <i>n</i> points, such that <span>\\(\\left( \\sum _{i=1}^n |x_i - x_{i+1}|^k \\right) ^{1/k} \\le c_k\\)</span>, where <span>\\(|x-y|\\)</span> is the Euclidean distance between <i>x</i> and <i>y</i>, and <span>\\(c_k\\)</span> is an absolute constant that depends only on <i>k</i>, where <span>\\(x_{n+1} \\equiv x_1\\)</span>. From the other direction, for every <span>\\(k \\ge 2\\)</span> and <span>\\(n \\ge 2\\)</span>, there exist <i>n</i> points in <span>\\([0,1]^k\\)</span>, such that their shortest tour satisfies <span>\\(\\left( \\sum _{i=1}^n |x_i - x_{i+1}|^k \\right) ^{1/k} = 2^{1/k} \\cdot \\sqrt{k}\\)</span>. For the plane, the best constant is <span>\\(c_2=2\\)</span> and this is the only exact value known. Bollobás and Meir showed that one can take <span>\\(c_k = 9 \\left( \\frac{2}{3} \\right) ^{1/k} \\cdot \\sqrt{k}\\)</span> for every <span>\\(k \\ge 3\\)</span> and conjectured that the best constant is <span>\\(c_k = 2^{1/k} \\cdot \\sqrt{k}\\)</span>, for every <span>\\(k \\ge 2\\)</span>. Here we significantly improve the upper bound and show that one can take <span>\\(c_k = 3 \\sqrt{5} \\left( \\frac{2}{3} \\right) ^{1/k} \\cdot \\sqrt{k}\\)</span> or <span>\\(c_k = 2.91 \\sqrt{k} \\ (1+o_k(1))\\)</span>. Our bounds are constructive. We also show that <span>\\(c_3 \\ge 2^{7/6}\\)</span>, which disproves the conjecture for <span>\\(k=3\\)</span>. Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 9","pages":"3054 - 3078"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00453-024-01257-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01257-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be an n-element point set in the k-dimensional unit cube \([0,1]^k\) where \(k \ge 2\). According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour) \(x_1, x_2, \ldots , x_n\) through the n points, such that \(\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k\), where \(|x-y|\) is the Euclidean distance between x and y, and \(c_k\) is an absolute constant that depends only on k, where \(x_{n+1} \equiv x_1\). From the other direction, for every \(k \ge 2\) and \(n \ge 2\), there exist n points in \([0,1]^k\), such that their shortest tour satisfies \(\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}\). For the plane, the best constant is \(c_2=2\) and this is the only exact value known. Bollobás and Meir showed that one can take \(c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}\) for every \(k \ge 3\) and conjectured that the best constant is \(c_k = 2^{1/k} \cdot \sqrt{k}\), for every \(k \ge 2\). Here we significantly improve the upper bound and show that one can take \(c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}\) or \(c_k = 2.91 \sqrt{k} \ (1+o_k(1))\). Our bounds are constructive. We also show that \(c_3 \ge 2^{7/6}\), which disproves the conjecture for \(k=3\). Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed.

关于单位立方体中点的旅行推销员问题
让 X 是 k 维单位立方体 \([0,1]^k\)中的一个 n 元素点集,其中 \(k \ge 2\).根据 Bollobás 和 Meir 的老结果(Oper Res Lett 11:19-21, 1992),存在一个经过 n 个点的循环(tour)(x_1, x_2, \ldots , x_n\),使得 \(\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k})\c_k\), 其中 \(|x-y|\) 是 x 和 y 之间的欧几里得距离,而 \(c_k\) 是一个只取决于 k 的绝对常数,其中 \(x_{n+1} \equiv x_1\).从另一个方向来看,对于每一个(k)和(n),在([0,1]^k\)中存在n个点,使得它们的最短巡回满足(left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k}\cdot \sqrt{k}/)。对于平面来说,最佳常数是 c_2=2,这是唯一已知的精确值。Bollobás和Meir证明,可以取(c_k = 9 \left( \frac{2}{3} \right) ^{1/k}c_k = 2^{1/k} \cdot \sqrt{k}\), for every \(k \ge 3\) and conjectured that the best constant is \(c_k = 2^{1/k} \cdot \sqrt{k}\), for every \(k \ge 2\).在这里,我们极大地改进了上界,并证明我们可以把(c_k = 3 \sqrt{5}\left( \frac{2}{3} \right) ^{1/k}\cdot \sqrt{k}\) or (c_k = 2.91 \sqrt{k}\ (1+o_k(1))\).我们的边界是建设性的。我们还证明了 \(c_3 \ge 2^{7/6}\),这推翻了对\(k=3\)的猜想。在此背景下,我们讨论了与匹配问题、幂赋值问题、相关问题(包括算法)的联系。还提出了一个稍作修订的 Bollobás-Meir 猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信