Weakly Approximate Diagonalization of Homomorphisms into Finite von Neumann Algebras

IF 0.8 3区 数学 Q2 MATHEMATICS
Wen Hua Qian, Jun Hao Shen, Wen Ming Wu
{"title":"Weakly Approximate Diagonalization of Homomorphisms into Finite von Neumann Algebras","authors":"Wen Hua Qian,&nbsp;Jun Hao Shen,&nbsp;Wen Ming Wu","doi":"10.1007/s10114-024-3260-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\cal{A}\\)</span> be a unital C*-algebra and <span>\\(\\cal{B}\\)</span> a unital C*-algebra with a faithful trace <i>τ</i>. Let <i>n</i> be a positive integer. We give the definition of weakly approximate diagonalization (with respect to <i>τ</i>) of a unital homomorphism <span>\\(\\phi:\\cal{A}\\rightarrow M_{n}(\\cal{B})\\)</span>. We give an equivalent characterization of McDuff II<sub>1</sub> factors. We show that, if <span>\\(\\cal{A}\\)</span> is a unital nuclear C*-algebra and <span>\\(\\cal{B}\\)</span> is a type II<sub>1</sub> factor with faithful trace <i>τ</i>, then every unital *-homomorphism <span>\\(\\phi:\\cal{A}\\rightarrow M_{n}(\\cal{B})\\)</span> is weakly approximately diagonalizable. If <span>\\(\\cal{B}\\)</span> is a unital simple infinite dimensional separable nuclear C*-algebra, then any finitely many elements in <span>\\(M_{n}(\\cal{B})\\)</span> can be simultaneously weakly approximately diagonalized while the elements in the diagonals can be required to be the same.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-3260-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\cal{A}\) be a unital C*-algebra and \(\cal{B}\) a unital C*-algebra with a faithful trace τ. Let n be a positive integer. We give the definition of weakly approximate diagonalization (with respect to τ) of a unital homomorphism \(\phi:\cal{A}\rightarrow M_{n}(\cal{B})\). We give an equivalent characterization of McDuff II1 factors. We show that, if \(\cal{A}\) is a unital nuclear C*-algebra and \(\cal{B}\) is a type II1 factor with faithful trace τ, then every unital *-homomorphism \(\phi:\cal{A}\rightarrow M_{n}(\cal{B})\) is weakly approximately diagonalizable. If \(\cal{B}\) is a unital simple infinite dimensional separable nuclear C*-algebra, then any finitely many elements in \(M_{n}(\cal{B})\) can be simultaneously weakly approximately diagonalized while the elements in the diagonals can be required to be the same.

进入有限冯-诺依曼代数的同态弱近似对角化
让 \(\cal{A}\) 是一个单素 C* 代数,而 \(\cal{B}\) 是一个具有忠实迹 τ 的单素 C* 代数。我们给出了单素同态 \(\phi:\cal{A}\rightarrow M_{n}(\cal{B})\) 的弱近似对角化(关于 τ)的定义。我们给出了麦克达夫 II1 因子的等价表征。我们证明,如果 \(\cal{A}\) 是一个单素核 C* 代数,并且 \(\cal{B}\) 是一个具有忠实迹 τ 的 II1 型因子,那么每个单素 * 同构 \(\phi:\cal{A}\rightarrow M_{n}(\cal{B})\) 都是弱近似可对角的。如果 \(\cal{B}\) 是一个单素简单无限维可分离核 C* 代数,那么 \(M_{n}(\cal{B})\ 中的任何有限多个元素都可以同时弱约对角化,而对角线上的元素可以被要求是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信