Numerical-Statistical Investigation of Superexponential Growth of Mean Particle Flow with Multiplication in a Homogeneous Random Medium

Pub Date : 2024-03-14 DOI:10.1134/S106456242370148X
G. A. Mikhailov, G. Z. Lotova
{"title":"Numerical-Statistical Investigation of Superexponential Growth of Mean Particle Flow with Multiplication in a Homogeneous Random Medium","authors":"G. A. Mikhailov,&nbsp;G. Z. Lotova","doi":"10.1134/S106456242370148X","DOIUrl":null,"url":null,"abstract":"<p>A new correlative-grid approximation of a homogeneous random field is introduced for an effective numerical-analytical investigation of the superexponential growth of the mean particle flow with multiplication in a random medium. The complexity of particle trajectory realization is independent of the correlation scale. Test computations for a critical ball with isotropic scattering showed high accuracy of the corresponding mean flow estimates. For the correlative-grid approximation of a random density field, the possibility of Gaussian asymptotics of the mean particle multiplication rate as the correlation scale decreases is justified.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S106456242370148X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new correlative-grid approximation of a homogeneous random field is introduced for an effective numerical-analytical investigation of the superexponential growth of the mean particle flow with multiplication in a random medium. The complexity of particle trajectory realization is independent of the correlation scale. Test computations for a critical ball with isotropic scattering showed high accuracy of the corresponding mean flow estimates. For the correlative-grid approximation of a random density field, the possibility of Gaussian asymptotics of the mean particle multiplication rate as the correlation scale decreases is justified.

Abstract Image

分享
查看原文
均质随机介质中平均粒子流倍增超指数增长的数值统计研究
为了对随机介质中平均粒子流的超指数增长进行有效的数值-分析研究,引入了一种新的均质随机场相关网格近似。粒子轨迹实现的复杂性与相关尺度无关。对具有各向同性散射的临界球的测试计算表明,相应的平均流估计值具有很高的准确性。对于随机密度场的相关网格近似,随着相关尺度的减小,粒子平均倍增率的高斯渐近线的可能性是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信