Multidimensional Cubature Formulas with Superpower Convergence

IF 0.5 4区 数学 Q3 MATHEMATICS
A. A. Belov, M. A. Tintul
{"title":"Multidimensional Cubature Formulas with Superpower Convergence","authors":"A. A. Belov,&nbsp;M. A. Tintul","doi":"10.1134/S1064562423701478","DOIUrl":null,"url":null,"abstract":"<p>In many applications, multidimensional integrals over the unit hypercube arise, which are calculated using Monte Carlo methods. The convergence of the best of them turns out to be quite slow. In this paper, fundamentally new cubature formulas with superpower convergence based on improved Korobov grids and a special variable substitution are proposed. A posteriori error estimates are constructed, which are nearly indistinguishable from the actual accuracy. Examples of calculations illustrating the advantages of the proposed methods are given.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"108 3","pages":"514 - 518"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701478","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In many applications, multidimensional integrals over the unit hypercube arise, which are calculated using Monte Carlo methods. The convergence of the best of them turns out to be quite slow. In this paper, fundamentally new cubature formulas with superpower convergence based on improved Korobov grids and a special variable substitution are proposed. A posteriori error estimates are constructed, which are nearly indistinguishable from the actual accuracy. Examples of calculations illustrating the advantages of the proposed methods are given.

Abstract Image

具有超强收敛性的多维立体公式
在许多应用中,都会出现单位超立方体上的多维积分,这些积分是用蒙特卡罗方法计算的。其中最好的方法收敛速度相当慢。本文基于改进的 Korobov 网格和特殊的变量替换,提出了具有超强收敛性的全新立方公式。本文构建的后验误差估计值与实际精度几乎没有差别。计算实例说明了所提方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信