On the Small-Mass Limit for Stationary Solutions of Stochastic Wave Equations with State Dependent Friction

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Sandra Cerrai, Mengzi Xie
{"title":"On the Small-Mass Limit for Stationary Solutions of Stochastic Wave Equations with State Dependent Friction","authors":"Sandra Cerrai,&nbsp;Mengzi Xie","doi":"10.1007/s00245-024-10153-2","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the convergence, in the small mass limit, of the stationary solutions of a class of stochastic damped wave equations, where the friction coefficient depends on the state and the noisy perturbation is of multiplicative type. We show that the Smoluchowski–Kramers approximation that has been previously shown to be true in any fixed time interval, is still valid in the long time regime. Namely, we prove that the first marginals of any sequence of stationary solutions for the damped wave equation converge to the unique invariant measure of the limiting stochastic quasilinear parabolic equation. The convergence is proved with respect to the Wasserstein distance associated with the <span>\\(H^{-1}\\)</span> norm.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"90 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10153-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the convergence, in the small mass limit, of the stationary solutions of a class of stochastic damped wave equations, where the friction coefficient depends on the state and the noisy perturbation is of multiplicative type. We show that the Smoluchowski–Kramers approximation that has been previously shown to be true in any fixed time interval, is still valid in the long time regime. Namely, we prove that the first marginals of any sequence of stationary solutions for the damped wave equation converge to the unique invariant measure of the limiting stochastic quasilinear parabolic equation. The convergence is proved with respect to the Wasserstein distance associated with the \(H^{-1}\) norm.

论具有状态相关摩擦力的随机波方程静态解的小质量极限
我们研究了一类随机阻尼波方程的静态解在小质量极限下的收敛性,其中摩擦系数取决于状态,噪声扰动为乘法类型。我们证明,之前已经证明在任何固定时间间隔内都成立的 Smoluchowskii-Kramers 近似在长时间段内仍然有效。也就是说,我们证明了阻尼波方程任何静止解序列的第一边际都收敛于极限随机准线性抛物线方程的唯一不变量。该收敛是通过与 \(H^{-1}\) 规范相关的 Wasserstein 距离来证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信