{"title":"A Riemannian geometric approach for timelike and null spacetime geodesics","authors":"Marcos A. Argañaraz, Oscar Lasso Andino","doi":"10.1007/s10714-024-03314-9","DOIUrl":null,"url":null,"abstract":"<div><p>The geodesic motion in a Lorentzian spacetime can be described by trajectories in a 3-dimensional Riemannian metric. In this article we present a generalized Jacobi metric obtained from projecting a Lorentzian metric over the directions of its Killing vectors. The resulting Riemannian metric inherits the geodesics for asymptotically flat spacetimes including the stationary and axisymmetric ones. The method allows us to find Riemannian metrics in three and two dimensions plus the radial geodesic equation when we project over three different directions. The 3-dimensional Riemannian metric reduces to the Jacobi metric when static, spherically symmetric and asymptotically flat spacetimes are considered. However, it can be calculated for a larger variety of metrics in any number of dimensions. We show that the geodesics of the original spacetime metrics are inherited by the projected Riemannian metric. We calculate the Gaussian and geodesic curvatures of the resulting 2-dimensional metric, we study its near horizon and asymptotic limit. We also show that this technique can be used for studying the violation of the strong cosmic censorship conjecture in the context of general relativity.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03314-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03314-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The geodesic motion in a Lorentzian spacetime can be described by trajectories in a 3-dimensional Riemannian metric. In this article we present a generalized Jacobi metric obtained from projecting a Lorentzian metric over the directions of its Killing vectors. The resulting Riemannian metric inherits the geodesics for asymptotically flat spacetimes including the stationary and axisymmetric ones. The method allows us to find Riemannian metrics in three and two dimensions plus the radial geodesic equation when we project over three different directions. The 3-dimensional Riemannian metric reduces to the Jacobi metric when static, spherically symmetric and asymptotically flat spacetimes are considered. However, it can be calculated for a larger variety of metrics in any number of dimensions. We show that the geodesics of the original spacetime metrics are inherited by the projected Riemannian metric. We calculate the Gaussian and geodesic curvatures of the resulting 2-dimensional metric, we study its near horizon and asymptotic limit. We also show that this technique can be used for studying the violation of the strong cosmic censorship conjecture in the context of general relativity.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.