Differential subordination for bounded turning functions using pre-Schwarzian and the Schwarzian derivatives

IF 1.4 3区 数学 Q1 MATHEMATICS
Neenu Jose, V. Ravichandran, Abhijit Das
{"title":"Differential subordination for bounded turning functions using pre-Schwarzian and the Schwarzian derivatives","authors":"Neenu Jose,&nbsp;V. Ravichandran,&nbsp;Abhijit Das","doi":"10.1007/s13324-024-00973-4","DOIUrl":null,"url":null,"abstract":"<div><p>A normalized analytic function defined on the open unit disk is a bounded turning function if its derivative has positive real part. Such functions are univalent, and therefore, we find sufficient conditions for a function to be a bounded turning function. In this paper, we prove a general differential subordination theorem in terms of the derivative, the pre-Schwarzian derivative, and the Schwarzian derivative, providing sufficient conditions for a function to be a bounded turning function. We then apply the result to obtain several simple sufficient conditions.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00973-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A normalized analytic function defined on the open unit disk is a bounded turning function if its derivative has positive real part. Such functions are univalent, and therefore, we find sufficient conditions for a function to be a bounded turning function. In this paper, we prove a general differential subordination theorem in terms of the derivative, the pre-Schwarzian derivative, and the Schwarzian derivative, providing sufficient conditions for a function to be a bounded turning function. We then apply the result to obtain several simple sufficient conditions.

使用前施瓦茨导数和施瓦茨导数的有界转折函数的微分从属关系
如果定义在开放单位圆盘上的归一化解析函数的导数具有正实部,那么它就是有界转折函数。这样的函数是一元函数,因此,我们找到了函数成为有界转折函数的充分条件。在本文中,我们用导数、前施瓦茨导数和施瓦茨导数证明了一般微分从属定理,为函数成为有界转折函数提供了充分条件。然后,我们应用该结果得到几个简单的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信