Necessary and sufficient conditions for the quantitative weighted bounds of the Calderón type commutator for the Littlewood–Paley operator

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanping Chen, Xiaoxuan Chang, Teng Wang
{"title":"Necessary and sufficient conditions for the quantitative weighted bounds of the Calderón type commutator for the Littlewood–Paley operator","authors":"Yanping Chen,&nbsp;Xiaoxuan Chang,&nbsp;Teng Wang","doi":"10.1007/s13324-024-00975-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the necessary and sufficient conditions for the quantitative weighted bounds of the Calderón type commutator for the Littlewood–Paley operator. Let <span>\\(g_{\\Omega ,1;b}\\)</span> be the Calderón type commutator for the Littlewood–Paley operator where <span>\\(\\Omega \\)</span> is homogeneous of degree zero and satisfies the cancellation condition on the unit sphere, and <span>\\(b\\in Lip(\\mathbb {R}^n)\\)</span>. More precisely, for the sufficiency, we use a new operator <span>\\(\\widetilde{G}_{\\Omega ,m;b}^j\\)</span>. Through the Calderón–Zygmund decomposition and the grand maximal operator <span>\\(\\mathcal {M}_{\\widetilde{G}_{\\Omega ,m;b}^j}\\)</span> of weak type (1,1), we establish a sparse domination of <span>\\(\\widetilde{G}_{\\Omega ,m;b}^j\\)</span>. And then applying the interpolation theorem with change of measures and the relationship between the operators <span>\\(g_{\\Omega ,1;b}\\)</span> and <span>\\(\\widetilde{G}_{\\Omega ,m;b}^j\\)</span>, we get the weighted bounds of the Calderón type commutators for the Littlewood–Paley operator <span>\\(g_{\\Omega ,1;b}\\)</span>. In addition, for the necessity, through the local mean oscillation, we obtain Lip-type characterizations of <span>\\(Lip(\\mathbb {R}^n)\\)</span> via the weighted bounds of the Calderón type commutators for the Littlewood–Paley operator.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00975-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the necessary and sufficient conditions for the quantitative weighted bounds of the Calderón type commutator for the Littlewood–Paley operator. Let \(g_{\Omega ,1;b}\) be the Calderón type commutator for the Littlewood–Paley operator where \(\Omega \) is homogeneous of degree zero and satisfies the cancellation condition on the unit sphere, and \(b\in Lip(\mathbb {R}^n)\). More precisely, for the sufficiency, we use a new operator \(\widetilde{G}_{\Omega ,m;b}^j\). Through the Calderón–Zygmund decomposition and the grand maximal operator \(\mathcal {M}_{\widetilde{G}_{\Omega ,m;b}^j}\) of weak type (1,1), we establish a sparse domination of \(\widetilde{G}_{\Omega ,m;b}^j\). And then applying the interpolation theorem with change of measures and the relationship between the operators \(g_{\Omega ,1;b}\) and \(\widetilde{G}_{\Omega ,m;b}^j\), we get the weighted bounds of the Calderón type commutators for the Littlewood–Paley operator \(g_{\Omega ,1;b}\). In addition, for the necessity, through the local mean oscillation, we obtain Lip-type characterizations of \(Lip(\mathbb {R}^n)\) via the weighted bounds of the Calderón type commutators for the Littlewood–Paley operator.

利特尔伍德-帕利算子的卡尔德隆型换元的定量加权边界的必要条件和充分条件
本文研究 Littlewood-Paley 算子的 Calderón 型换元的定量加权边界的必要条件和充分条件。设 \(g_{\Omega ,1;b}\) 是 Littlewood-Paley 算子的 Calderón 型换元器,其中 \(\Omega \) 是零度同调且满足单位球上的取消条件,并且 \(b\in Lip(\mathbb {R}^n)\)。更准确地说,为了达到充分性,我们使用了一个新的算子 (\widetilde{G}_{\Omega ,m;b}^j\ )。通过 Calderón-Zygmund 分解和弱型(1,1)的最大算子 \(\mathcal {M}_{\widetilde{G}_{\Omega ,m;b}^j}\), 我们建立了 \(\widetilde{G}_{\Omega ,m;b}^j\) 的稀疏支配。然后应用量纲变化插值定理以及算子 \(g_{\Omega ,1;b}\) 和 \(\widetilde{G}_\{Omega ,m;b}^j\) 之间的关系,我们得到了 Littlewood-Paley 算子 \(g_{\Omega ,1;b}\) 的 Calderón 型换元的加权边界。此外,对于必然性,通过局部均值振荡,我们通过 Littlewood-Paley 算子的 Calderón 型换向器的加权边界得到了 \(Lip(\mathbb {R}^n)\) 的 Lip 型特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信