Necessary and sufficient conditions for the quantitative weighted bounds of the Calderón type commutator for the Littlewood–Paley operator

IF 1.4 3区 数学 Q1 MATHEMATICS
Yanping Chen, Xiaoxuan Chang, Teng Wang
{"title":"Necessary and sufficient conditions for the quantitative weighted bounds of the Calderón type commutator for the Littlewood–Paley operator","authors":"Yanping Chen,&nbsp;Xiaoxuan Chang,&nbsp;Teng Wang","doi":"10.1007/s13324-024-00975-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the necessary and sufficient conditions for the quantitative weighted bounds of the Calderón type commutator for the Littlewood–Paley operator. Let <span>\\(g_{\\Omega ,1;b}\\)</span> be the Calderón type commutator for the Littlewood–Paley operator where <span>\\(\\Omega \\)</span> is homogeneous of degree zero and satisfies the cancellation condition on the unit sphere, and <span>\\(b\\in Lip(\\mathbb {R}^n)\\)</span>. More precisely, for the sufficiency, we use a new operator <span>\\(\\widetilde{G}_{\\Omega ,m;b}^j\\)</span>. Through the Calderón–Zygmund decomposition and the grand maximal operator <span>\\(\\mathcal {M}_{\\widetilde{G}_{\\Omega ,m;b}^j}\\)</span> of weak type (1,1), we establish a sparse domination of <span>\\(\\widetilde{G}_{\\Omega ,m;b}^j\\)</span>. And then applying the interpolation theorem with change of measures and the relationship between the operators <span>\\(g_{\\Omega ,1;b}\\)</span> and <span>\\(\\widetilde{G}_{\\Omega ,m;b}^j\\)</span>, we get the weighted bounds of the Calderón type commutators for the Littlewood–Paley operator <span>\\(g_{\\Omega ,1;b}\\)</span>. In addition, for the necessity, through the local mean oscillation, we obtain Lip-type characterizations of <span>\\(Lip(\\mathbb {R}^n)\\)</span> via the weighted bounds of the Calderón type commutators for the Littlewood–Paley operator.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00975-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the necessary and sufficient conditions for the quantitative weighted bounds of the Calderón type commutator for the Littlewood–Paley operator. Let \(g_{\Omega ,1;b}\) be the Calderón type commutator for the Littlewood–Paley operator where \(\Omega \) is homogeneous of degree zero and satisfies the cancellation condition on the unit sphere, and \(b\in Lip(\mathbb {R}^n)\). More precisely, for the sufficiency, we use a new operator \(\widetilde{G}_{\Omega ,m;b}^j\). Through the Calderón–Zygmund decomposition and the grand maximal operator \(\mathcal {M}_{\widetilde{G}_{\Omega ,m;b}^j}\) of weak type (1,1), we establish a sparse domination of \(\widetilde{G}_{\Omega ,m;b}^j\). And then applying the interpolation theorem with change of measures and the relationship between the operators \(g_{\Omega ,1;b}\) and \(\widetilde{G}_{\Omega ,m;b}^j\), we get the weighted bounds of the Calderón type commutators for the Littlewood–Paley operator \(g_{\Omega ,1;b}\). In addition, for the necessity, through the local mean oscillation, we obtain Lip-type characterizations of \(Lip(\mathbb {R}^n)\) via the weighted bounds of the Calderón type commutators for the Littlewood–Paley operator.

利特尔伍德-帕利算子的卡尔德隆型换元的定量加权边界的必要条件和充分条件
本文研究 Littlewood-Paley 算子的 Calderón 型换元的定量加权边界的必要条件和充分条件。设 \(g_{\Omega ,1;b}\) 是 Littlewood-Paley 算子的 Calderón 型换元器,其中 \(\Omega \) 是零度同调且满足单位球上的取消条件,并且 \(b\in Lip(\mathbb {R}^n)\)。更准确地说,为了达到充分性,我们使用了一个新的算子 (\widetilde{G}_{\Omega ,m;b}^j\ )。通过 Calderón-Zygmund 分解和弱型(1,1)的最大算子 \(\mathcal {M}_{\widetilde{G}_{\Omega ,m;b}^j}\), 我们建立了 \(\widetilde{G}_{\Omega ,m;b}^j\) 的稀疏支配。然后应用量纲变化插值定理以及算子 \(g_{\Omega ,1;b}\) 和 \(\widetilde{G}_\{Omega ,m;b}^j\) 之间的关系,我们得到了 Littlewood-Paley 算子 \(g_{\Omega ,1;b}\) 的 Calderón 型换元的加权边界。此外,对于必然性,通过局部均值振荡,我们通过 Littlewood-Paley 算子的 Calderón 型换向器的加权边界得到了 \(Lip(\mathbb {R}^n)\) 的 Lip 型特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信