Safety management system of new energy vehicle power battery based on improved LSTM

Q2 Energy
Kun Zhao, Hao Bai
{"title":"Safety management system of new energy vehicle power battery based on improved LSTM","authors":"Kun Zhao,&nbsp;Hao Bai","doi":"10.1186/s42162-024-00411-6","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of sustainable economy, new energy materials are widely used in various industries, and many cars also adopt new energy power batteries as power sources. However, it is currently not possible to accurately diagnose faults in power batteries, which results in the safety of power batteries not being guaranteed. To address this issue, this study utilizes the Whale Optimization Algorithm to improve the Long Short-Term Memory algorithm and constructs a fault diagnosis model based on the improved algorithm. The purpose of using this model for fault diagnosis of power batteries is to strengthen the safety management of batteries. This study first conducted experiments on the improved algorithm and obtained an accuracy of 95.3%. The simulation results of the fault diagnosis model showed that the diagnosis time was only 1.2s. The analysis of the power battery showed that after using this model, the safety performance has been improved by 90.1%, while the maintenance cost has been reduced to 20.3% of the original. The above results verify that the fault diagnosis model based on the improved algorithm can accurately diagnose faults in power batteries, thereby improving the safety of power batteries.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00411-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00411-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of sustainable economy, new energy materials are widely used in various industries, and many cars also adopt new energy power batteries as power sources. However, it is currently not possible to accurately diagnose faults in power batteries, which results in the safety of power batteries not being guaranteed. To address this issue, this study utilizes the Whale Optimization Algorithm to improve the Long Short-Term Memory algorithm and constructs a fault diagnosis model based on the improved algorithm. The purpose of using this model for fault diagnosis of power batteries is to strengthen the safety management of batteries. This study first conducted experiments on the improved algorithm and obtained an accuracy of 95.3%. The simulation results of the fault diagnosis model showed that the diagnosis time was only 1.2s. The analysis of the power battery showed that after using this model, the safety performance has been improved by 90.1%, while the maintenance cost has been reduced to 20.3% of the original. The above results verify that the fault diagnosis model based on the improved algorithm can accurately diagnose faults in power batteries, thereby improving the safety of power batteries.

基于改进型 LSTM 的新能源汽车动力电池安全管理系统
随着可持续经济的发展,新能源材料被广泛应用于各行各业,许多汽车也采用新能源动力电池作为动力源。然而,目前无法准确诊断动力电池的故障,导致动力电池的安全性得不到保障。针对这一问题,本研究利用鲸鱼优化算法改进了长短期记忆算法,并在改进算法的基础上构建了故障诊断模型。利用该模型对动力电池进行故障诊断的目的是加强电池的安全管理。本研究首先对改进算法进行了实验,获得了 95.3% 的准确率。故障诊断模型的仿真结果表明,诊断时间仅为 1.2s。对动力电池的分析表明,使用该模型后,安全性能提高了 90.1%,维护成本降低到原来的 20.3%。上述结果验证了基于改进算法的故障诊断模型能够准确诊断动力电池的故障,从而提高动力电池的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信