Conglomeration of Elemental Powders of High-Entropy 30Fe–30Cr–20Ni–10Mo–10W Alloy for Additive Manufacturing

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Yu. Ivannikov, A. B. Ankudinov, A. B. Mikhailova, B. A. Rumyantsev, A. V. Mikhailova, V. A. Zelensky
{"title":"Conglomeration of Elemental Powders of High-Entropy 30Fe–30Cr–20Ni–10Mo–10W Alloy for Additive Manufacturing","authors":"A. Yu. Ivannikov,&nbsp;A. B. Ankudinov,&nbsp;A. B. Mikhailova,&nbsp;B. A. Rumyantsev,&nbsp;A. V. Mikhailova,&nbsp;V. A. Zelensky","doi":"10.1134/S2075113324700990","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The possibility of a conglomeration of elemental powders in the mechanical synthesis of a high-entropy 30Fe–30Cr–20Ni–10Mo–10W alloy has been determined. The distribution of particles of elemental powders in conglomerates formed during mechanical alloying has been studied. The influence of mechanical alloying modes on the content of conglomerates of a fraction of more than 32 μm in the powder charge is determined. The phase composition of the conglomerates after hydrogen heat treatment has been studied. The resulting conglomerates can be used in the process of additive manufacturing of parts of oil and gas equipment for operation in conditions of high temperatures and corrosive effects.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 5","pages":"1355 - 1359"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract—The possibility of a conglomeration of elemental powders in the mechanical synthesis of a high-entropy 30Fe–30Cr–20Ni–10Mo–10W alloy has been determined. The distribution of particles of elemental powders in conglomerates formed during mechanical alloying has been studied. The influence of mechanical alloying modes on the content of conglomerates of a fraction of more than 32 μm in the powder charge is determined. The phase composition of the conglomerates after hydrogen heat treatment has been studied. The resulting conglomerates can be used in the process of additive manufacturing of parts of oil and gas equipment for operation in conditions of high temperatures and corrosive effects.

Abstract Image

用于增材制造的高熵 30Fe-30Cr-20Ni-10Mo-10W 合金元素粉末聚合体
摘要 确定了高熵 30Fe-30Cr-20Ni-10Mo-10W 合金机械合成过程中元素粉末团聚的可能性。研究了机械合金化过程中形成的团块中元素粉末颗粒的分布。确定了机械合金化模式对粉末装料中大于 32 μm 的团块含量的影响。研究了氢热处理后团块的相组成。所得到的团块可用于高温和腐蚀条件下石油和天然气设备部件的增材制造工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Materials: Applied Research
Inorganic Materials: Applied Research Engineering-Engineering (all)
CiteScore
0.90
自引率
0.00%
发文量
199
期刊介绍: Inorganic Materials: Applied Research  contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya  and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信