S. Mehrabankar, P. Mahmoudi, F. Abbasnezhad, D. Afshar, A. Isar
{"title":"Effect of noisy environment on secure quantum teleportation of unimodal Gaussian states","authors":"S. Mehrabankar, P. Mahmoudi, F. Abbasnezhad, D. Afshar, A. Isar","doi":"10.1007/s11128-024-04545-0","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum networks rely on quantum teleportation, a process where an unknown quantum state is transmitted between sender and receiver via entangled states and classical communication. In our study, we utilize a continuous variable two-mode squeezed vacuum state as the primary resource for quantum teleportation, shared by Alice and Bob, while exposed to a squeezed thermal environment. Secure quantum teleportation necessitates a teleportation fidelity exceeding 2/3 and the establishment of two-way steering of the resource state. We investigate the temporal evolution of steering and teleportation fidelity to determine critical parameter values for secure quantum teleportation of a coherent Gaussian state. Our findings reveal constraints imposed by temperature, dissipation rate, and squeezing parameters of the squeezed thermal reservoir on the duration of secure quantum teleportation. Intriguingly, we demonstrate that increasing the squeezing parameter of the initial state effectively extends the temporal window for a successful secure quantum teleportation.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-024-04545-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04545-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum networks rely on quantum teleportation, a process where an unknown quantum state is transmitted between sender and receiver via entangled states and classical communication. In our study, we utilize a continuous variable two-mode squeezed vacuum state as the primary resource for quantum teleportation, shared by Alice and Bob, while exposed to a squeezed thermal environment. Secure quantum teleportation necessitates a teleportation fidelity exceeding 2/3 and the establishment of two-way steering of the resource state. We investigate the temporal evolution of steering and teleportation fidelity to determine critical parameter values for secure quantum teleportation of a coherent Gaussian state. Our findings reveal constraints imposed by temperature, dissipation rate, and squeezing parameters of the squeezed thermal reservoir on the duration of secure quantum teleportation. Intriguingly, we demonstrate that increasing the squeezing parameter of the initial state effectively extends the temporal window for a successful secure quantum teleportation.
量子网络依赖于量子远传,即通过纠缠态和经典通信在发送方和接收方之间传输未知量子态的过程。在我们的研究中,我们利用一个连续可变的双模挤压真空状态作为量子远传的主要资源,由 Alice 和 Bob 共享,同时暴露在挤压热环境中。安全量子传送要求传送保真度超过 2/3,并建立资源状态的双向转向。我们研究了转向和远距传物保真度的时间演化,以确定相干高斯态安全量子远距传物的临界参数值。我们的研究结果揭示了温度、耗散率和挤压热库的挤压参数对安全量子远距传输持续时间的限制。耐人寻味的是,我们证明了增加初始状态的挤压参数可以有效延长安全量子远距传输成功的时间窗口。
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.