{"title":"Nickel-Containing Nanocomposites Based on Isotactic Polypropylene and High-Pressure Polyethylene","authors":"N. I. Kurbanova, S. K. Ragimova, T. M. Guliyeva","doi":"10.1134/S2075113324700989","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The effect of nanofiller (NF) additives containing nickel oxide nanoparticles (NPs) stabilized by a polymer matrix of high-pressure polyethylene (PE) obtained by the mechanochemical method on the peculiarities of the structure and properties of metal-containing nanocomposites based on isotactic polypropylene (PP) and high-pressure polyethylene (PE) is studied. Differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM) are used. Improvement of the strength, deformation, and rheological parameters as well as thermo-oxidative stability of the obtained nanocomposites is found. This is apparently associated with the synergistic effect of the interfacial interaction of nickel-containing nanoparticles in the PE matrix with the components of the PP/PE polymer composition. It is shown that nanocomposites based on PP/PE/NF can be processed by both the method of pressing and the methods of injection molding and extrusion, which expands the scope of their application.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 5","pages":"1350 - 1354"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract—The effect of nanofiller (NF) additives containing nickel oxide nanoparticles (NPs) stabilized by a polymer matrix of high-pressure polyethylene (PE) obtained by the mechanochemical method on the peculiarities of the structure and properties of metal-containing nanocomposites based on isotactic polypropylene (PP) and high-pressure polyethylene (PE) is studied. Differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM) are used. Improvement of the strength, deformation, and rheological parameters as well as thermo-oxidative stability of the obtained nanocomposites is found. This is apparently associated with the synergistic effect of the interfacial interaction of nickel-containing nanoparticles in the PE matrix with the components of the PP/PE polymer composition. It is shown that nanocomposites based on PP/PE/NF can be processed by both the method of pressing and the methods of injection molding and extrusion, which expands the scope of their application.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.