L. S. Alekseeva, A. V. Nokhrin, A. I. Orlova, M. S. Boldin, E. A. Lantcev, A. A. Murashov, V. N. Chuvil’deev, N. Yu. Tabachkova, N. V. Sakharov, A. A. Moskvichev
{"title":"Thermal Conductivity of YAG:Nd + Mo Ceramic Composites Obtained by Spark Plasma Sintering","authors":"L. S. Alekseeva, A. V. Nokhrin, A. I. Orlova, M. S. Boldin, E. A. Lantcev, A. A. Murashov, V. N. Chuvil’deev, N. Yu. Tabachkova, N. V. Sakharov, A. A. Moskvichev","doi":"10.1134/S2075113324701090","DOIUrl":null,"url":null,"abstract":"<p>The microstructure and thermophysical properties (specific heat capacity, thermal diffusivity, thermal conductivity) of fine-grained ceramic composites based on yttrium-aluminum garnet Y<sub>2.5</sub>Nd<sub>0.5</sub>Al<sub>5</sub>O<sub>12</sub> (YAG:Nd) with different molybdenum contents (10, 20 and 40 vol %) were studied. Submicron garnet powders of Y<sub>2.5</sub>Nd<sub>0.5</sub>Al<sub>5</sub>O<sub>12</sub> were obtained by the coprecipitation method; YAG:Nd + Mo powder compositions with the YAG:Nd core–Mo shell structure were obtained by deposition of molybdenum onto the surface of garnet particles; samples of ceramic composites were obtained by the method of spark plasma sintering (SPS). Electron microscopy and X-ray phase analysis were used to study the microstructure and phase composition of the composites. YAG:Nd + Mo composites have a high relative density (98.1–99%) and a uniform fine-grained microstructure with a garnet grain size of 2–3 μm. Sintered YAG:Nd + Mo composites at room and elevated temperatures (up to 1100°C) have a high thermal conductivity coefficient exceeding the thermal conductivity coefficient of uranium dioxide UO<sub>2</sub>, which allows using these materials as heat-resistant inert fuel matrices. It was shown that higher thermal conductivity of composites is ensured at a content of at least 20 vol % Mo. In composites with the addition of 20 and 40% Mo, the thermal conductivity coefficient at 1100°C reaches 7.0 and 8.8 W m<sup>–1</sup> K<sup>–1</sup>, respectively.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 5","pages":"1429 - 1436"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324701090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The microstructure and thermophysical properties (specific heat capacity, thermal diffusivity, thermal conductivity) of fine-grained ceramic composites based on yttrium-aluminum garnet Y2.5Nd0.5Al5O12 (YAG:Nd) with different molybdenum contents (10, 20 and 40 vol %) were studied. Submicron garnet powders of Y2.5Nd0.5Al5O12 were obtained by the coprecipitation method; YAG:Nd + Mo powder compositions with the YAG:Nd core–Mo shell structure were obtained by deposition of molybdenum onto the surface of garnet particles; samples of ceramic composites were obtained by the method of spark plasma sintering (SPS). Electron microscopy and X-ray phase analysis were used to study the microstructure and phase composition of the composites. YAG:Nd + Mo composites have a high relative density (98.1–99%) and a uniform fine-grained microstructure with a garnet grain size of 2–3 μm. Sintered YAG:Nd + Mo composites at room and elevated temperatures (up to 1100°C) have a high thermal conductivity coefficient exceeding the thermal conductivity coefficient of uranium dioxide UO2, which allows using these materials as heat-resistant inert fuel matrices. It was shown that higher thermal conductivity of composites is ensured at a content of at least 20 vol % Mo. In composites with the addition of 20 and 40% Mo, the thermal conductivity coefficient at 1100°C reaches 7.0 and 8.8 W m–1 K–1, respectively.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.