Eduardo Barreto Brito, Fernando M. de Paula Neto, Nadja Kolb Bernardes
{"title":"Quantum classifier based on open quantum systems with amplitude information loading","authors":"Eduardo Barreto Brito, Fernando M. de Paula Neto, Nadja Kolb Bernardes","doi":"10.1007/s11128-024-04526-3","DOIUrl":null,"url":null,"abstract":"<div><p>Although the studies on quantum algorithms have been progressing, it is still necessary to broaden the investigation of open quantum systems. In this study, we present the use of an open quantum system to implement a quantum classifier algorithm. Zhang et al. propose a one-QuBit system interacting with the environment through a unitary operator from the Hamiltonian. In our proposal, the input data are loaded into the amplitude of the environment instead of being in the unitary operator. This change positively impacts the performance of different databases tested and causes a difference in the system entanglement behavior. For evaluation, the Zhang et al. proposed models were tested in four real-world datasets and seven other toy problems. The results are evaluated according to accuracy and F1 score. A deeper analysis of the Iris dataset is also done, checking the creation of entanglement and an extensive random search for better parameters on the proposed model. The results show that for most real-world dataset configurations, the proposed model, although having a simpler decision area, performed better than the one inspired by the Zhang et al. model, and that there is no pattern for the system entanglement in the Iris dataset.\n</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04526-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although the studies on quantum algorithms have been progressing, it is still necessary to broaden the investigation of open quantum systems. In this study, we present the use of an open quantum system to implement a quantum classifier algorithm. Zhang et al. propose a one-QuBit system interacting with the environment through a unitary operator from the Hamiltonian. In our proposal, the input data are loaded into the amplitude of the environment instead of being in the unitary operator. This change positively impacts the performance of different databases tested and causes a difference in the system entanglement behavior. For evaluation, the Zhang et al. proposed models were tested in four real-world datasets and seven other toy problems. The results are evaluated according to accuracy and F1 score. A deeper analysis of the Iris dataset is also done, checking the creation of entanglement and an extensive random search for better parameters on the proposed model. The results show that for most real-world dataset configurations, the proposed model, although having a simpler decision area, performed better than the one inspired by the Zhang et al. model, and that there is no pattern for the system entanglement in the Iris dataset.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.