Experimental constraints on serpentinite carbonation in the presence of a H2O–CO2–NaCl fluid

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Yongsheng Huang, Satoshi Okumura, Kazuhisa Matsumoto, Naoko Takahashi, Hong Tang, Guoji Wu, Tatsuki Tsujimori, Michihiko Nakamura, Atsushi Okamoto, Yuan Li
{"title":"Experimental constraints on serpentinite carbonation in the presence of a H2O–CO2–NaCl fluid","authors":"Yongsheng Huang,&nbsp;Satoshi Okumura,&nbsp;Kazuhisa Matsumoto,&nbsp;Naoko Takahashi,&nbsp;Hong Tang,&nbsp;Guoji Wu,&nbsp;Tatsuki Tsujimori,&nbsp;Michihiko Nakamura,&nbsp;Atsushi Okamoto,&nbsp;Yuan Li","doi":"10.1007/s00410-024-02175-4","DOIUrl":null,"url":null,"abstract":"<div><p>Serpentinite carbonation contributes to the deep carbon (C) cycle. Recently, geophysical and numerical studies have inferred considerable hydrothermal alteration in plate bending faults, opening the possibility of significant C storage in the slab mantle. However, there is a lack of quantitative determination of C uptake in serpentinized mantle rocks. Here, we experimentally constrain serpentinite carbonation in H<sub>2</sub>O–CO<sub>2</sub>–NaCl fluids to estimate C uptake in hydrated mantle rocks. We find that serpentinite carbonation results in the formation of talc and magnesite along the serpentinite surface. The presence of porous reaction zones (49.2% porosity) promotes the progress of carbonation reactions through a continuous supply of CO<sub>2</sub>-bearing fluids to the reaction front. Added NaCl effectively decreases the serpentinite carbonation efficiency, particularly at low salinities (&lt; 5.0 wt%), which is likely attributed to the reduction in fluid pH and the transport rate of reactants, and the increase in magnesite solubility. Based on previous and our experiments, we fit an empirical equation for the reaction rate of serpentinite carbonation. Extrapolation of this equation to depths of plate bending fault systems suggests that serpentinite carbonation may contribute to an influx of up to 7.3–28.5 Mt C/yr in subduction zones. Our results provide new insights into serpentinite carbonation in environments with high fluid salinities and potentially contribute to the understanding of the C cycle in subduction zones.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02175-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02175-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Serpentinite carbonation contributes to the deep carbon (C) cycle. Recently, geophysical and numerical studies have inferred considerable hydrothermal alteration in plate bending faults, opening the possibility of significant C storage in the slab mantle. However, there is a lack of quantitative determination of C uptake in serpentinized mantle rocks. Here, we experimentally constrain serpentinite carbonation in H2O–CO2–NaCl fluids to estimate C uptake in hydrated mantle rocks. We find that serpentinite carbonation results in the formation of talc and magnesite along the serpentinite surface. The presence of porous reaction zones (49.2% porosity) promotes the progress of carbonation reactions through a continuous supply of CO2-bearing fluids to the reaction front. Added NaCl effectively decreases the serpentinite carbonation efficiency, particularly at low salinities (< 5.0 wt%), which is likely attributed to the reduction in fluid pH and the transport rate of reactants, and the increase in magnesite solubility. Based on previous and our experiments, we fit an empirical equation for the reaction rate of serpentinite carbonation. Extrapolation of this equation to depths of plate bending fault systems suggests that serpentinite carbonation may contribute to an influx of up to 7.3–28.5 Mt C/yr in subduction zones. Our results provide new insights into serpentinite carbonation in environments with high fluid salinities and potentially contribute to the understanding of the C cycle in subduction zones.

存在 H2O-CO2-NaCl 流体时蛇绿岩碳化的实验制约因素
蛇绿岩碳化有助于深层碳循环。最近,地球物理和数值研究推断,板块弯曲断层中存在大量热液蚀变,这为在板幔中大量储存碳提供了可能。然而,目前还缺乏对蛇纹岩化地幔岩石中C吸收的定量测定。在这里,我们通过实验对蛇绿岩在H2O-CO2-NaCl流体中的碳化作用进行了约束,以估算水化地幔岩中的碳吸收量。我们发现,蛇绿岩碳化导致沿蛇绿岩表面形成滑石和菱镁矿。多孔反应区(孔隙率为 49.2%)的存在通过向反应前沿持续供应含二氧化碳的流体促进了碳化反应的进展。氯化钠的添加有效降低了蛇绿岩的碳化效率,尤其是在低盐度(5.0 wt%)条件下,这可能是由于流体 pH 值和反应物迁移率的降低以及菱镁矿溶解度的增加。根据以前的实验和我们的实验,我们拟合了蛇纹石碳化反应速率的经验方程。将该方程推断到板块弯曲断层系统的深度表明,蛇绿岩碳化可能会导致俯冲带的碳流入量高达 7.3-28.5 兆吨/年。我们的研究结果为研究高流体盐度环境中的蛇绿岩碳化提供了新的视角,并可能有助于理解俯冲带的碳循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信