The zeta-determinant of the Dirichlet-to-Neumann operator on forms

IF 0.6 3区 数学 Q3 MATHEMATICS
Klaus Kirsten, Yoonweon Lee
{"title":"The zeta-determinant of the Dirichlet-to-Neumann operator on forms","authors":"Klaus Kirsten,&nbsp;Yoonweon Lee","doi":"10.1007/s10455-024-09975-8","DOIUrl":null,"url":null,"abstract":"<div><p>On a compact Riemannian manifold <i>M</i> with boundary <i>Y</i>, we express the log of the zeta-determinant of the Dirichlet-to-Neumann operator acting on <i>q</i>-forms on <i>Y</i> as the difference of the log of the zeta-determinant of the Laplacian on <i>q</i>-forms on <i>M</i> with the absolute boundary condition and that of the Laplacian with the Dirichlet boundary condition with an additional term which is expressed by curvature tensors. When the dimension of <i>M</i> is 2 and 3, we compute these terms explicitly. We also discuss the value of the zeta function at zero associated to the Dirichlet-to-Neumann operator by using a metric rescaling method. As an application, we recover the result of the conformal invariance obtained in Guillarmou and Guillope (Int Math Res Not IMRN 2007(22):rnm099, 2007) when <span>\\({\\text {dim}}M = 2\\)</span>.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09975-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

On a compact Riemannian manifold M with boundary Y, we express the log of the zeta-determinant of the Dirichlet-to-Neumann operator acting on q-forms on Y as the difference of the log of the zeta-determinant of the Laplacian on q-forms on M with the absolute boundary condition and that of the Laplacian with the Dirichlet boundary condition with an additional term which is expressed by curvature tensors. When the dimension of M is 2 and 3, we compute these terms explicitly. We also discuss the value of the zeta function at zero associated to the Dirichlet-to-Neumann operator by using a metric rescaling method. As an application, we recover the result of the conformal invariance obtained in Guillarmou and Guillope (Int Math Res Not IMRN 2007(22):rnm099, 2007) when \({\text {dim}}M = 2\).

形式上的狄利克特到诺伊曼算子的zeta决定子
在具有边界 Y 的紧凑黎曼流形 M 上,我们将作用于 Y 上 q-forms 的 Dirichlet-toNeumann 算子的 zeta 定值的对数表示为 M 上具有绝对边界条件的 q-forms 的拉普拉斯定值的对数与具有 Dirichlet 边界条件的拉普拉斯定值的对数之差,并加上用曲率张量表示的附加项。当 M 的维数为 2 和 3 时,我们将明确计算这些项。我们还利用度量重定标方法讨论了与狄利克特到诺伊曼算子相关的零点zeta函数值。作为应用,我们恢复了 Guillarmou 和 Guillope (Int Math Res Not IMRN 2007(22):rnm099, 2007) 在 \({\text {dim}}M = 2\) 时得到的保角不变性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信