Uniform Stabilization for the Semi-linear Wave Equation with Nonlinear Kelvin–Voigt Damping

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Kaïs Ammari, Marcelo M. Cavalcanti, Sabeur Mansouri
{"title":"Uniform Stabilization for the Semi-linear Wave Equation with Nonlinear Kelvin–Voigt Damping","authors":"Kaïs Ammari,&nbsp;Marcelo M. Cavalcanti,&nbsp;Sabeur Mansouri","doi":"10.1007/s00245-024-10186-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the decay estimate of solutions to the semilinear wave equation subject to two localized dampings in a bounded domain. The first one is of the nonlinear Kelvin–Voigt type which is distributed around a neighborhood of the boundary and the second is a frictional damping depending in the first one. We show uniform decay rate results of the corresponding energy for all initial data taken in bounded sets of finite energy phase-space. The proof is based on obtaining an observability inequality which combines unique continuation properties and the tools of the Microlocal Analysis Theory</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"90 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10186-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the decay estimate of solutions to the semilinear wave equation subject to two localized dampings in a bounded domain. The first one is of the nonlinear Kelvin–Voigt type which is distributed around a neighborhood of the boundary and the second is a frictional damping depending in the first one. We show uniform decay rate results of the corresponding energy for all initial data taken in bounded sets of finite energy phase-space. The proof is based on obtaining an observability inequality which combines unique continuation properties and the tools of the Microlocal Analysis Theory

具有非线性开尔文-沃依格阻尼的半线性波方程的均匀稳定问题
本文关注的是在有界域中受到两个局部阻尼作用的半线性波方程解的衰减估计。第一个阻尼属于非线性开尔文-沃伊特类型,分布在边界附近;第二个阻尼属于摩擦阻尼,取决于第一个阻尼。我们展示了有限能量相空间有界集中所有初始数据相应能量的均匀衰减率结果。证明基于可观测性不等式,该不等式结合了独特的延续特性和微局域分析理论工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信