On the collapse of the local Rayleigh condition for the hydrostatic Euler equations and the finite time blow-up of the semi-Lagrangian equations

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Victor Cañulef-Aguilar
{"title":"On the collapse of the local Rayleigh condition for the hydrostatic Euler equations and the finite time blow-up of the semi-Lagrangian equations","authors":"Victor Cañulef-Aguilar","doi":"10.1007/s00205-024-02040-5","DOIUrl":null,"url":null,"abstract":"<div><p>Local existence and uniqueness for the two-dimensional hydrostatic Euler equations in Sobolev spaces has been established by Masmoudi and Wong (Arch Rational Mech Anal 204:231–271, 2012) under the local Rayleigh condition. Under certain assumptions, we show that such solution will either develop singularities or produce the collapse of the local Rayleigh condition. In addition, we find necessary conditions for global solvability in Sobolev spaces. Finally, for certain class of initial data, we establish the finite time blow-up of solutions of the semi-Lagrangian equations introduced by Brenier (Nonlinearity 12:495–512, 1999). Our proof relies on new monotonicity identities for the solution of the hydrostatic Euler equations under the local Rayleigh condition.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02040-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Local existence and uniqueness for the two-dimensional hydrostatic Euler equations in Sobolev spaces has been established by Masmoudi and Wong (Arch Rational Mech Anal 204:231–271, 2012) under the local Rayleigh condition. Under certain assumptions, we show that such solution will either develop singularities or produce the collapse of the local Rayleigh condition. In addition, we find necessary conditions for global solvability in Sobolev spaces. Finally, for certain class of initial data, we establish the finite time blow-up of solutions of the semi-Lagrangian equations introduced by Brenier (Nonlinearity 12:495–512, 1999). Our proof relies on new monotonicity identities for the solution of the hydrostatic Euler equations under the local Rayleigh condition.

论静力学欧拉方程局部瑞利条件的崩溃和半拉格朗日方程的有限时间膨胀
Masmoudi 和 Wong(Arch Rational Mech Anal 204:231-271, 2012)在局部瑞利条件下建立了 Sobolev 空间中二维静力学欧拉方程的局部存在性和唯一性。在某些假设条件下,我们证明这种解要么会出现奇点,要么会产生局部瑞利条件的崩溃。此外,我们还找到了在索波列夫空间中全局可解性的必要条件。最后,对于某类初始数据,我们确定了布雷尼尔(Nonlinearity 12:495-512, 1999)提出的半拉格朗日方程解的有限时间膨胀。我们的证明依赖于局部雷利条件下静水欧拉方程解的新单调性同式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信