Explicit Formulas for Probabilistic Multi-Poly-Bernoulli Polynomials and Numbers

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
T. Kim, D. S. Kim
{"title":"Explicit Formulas for Probabilistic Multi-Poly-Bernoulli Polynomials and Numbers","authors":"T. Kim,&nbsp;D. S. Kim","doi":"10.1134/S1061920824030087","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(Y\\)</span> be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to study probabilistic Bernoulli polynomials of order <span>\\(r\\)</span> associated with <span>\\(Y\\)</span> and probabilistic multi-poly-Bernoulli polynomials associated with <span>\\(Y\\)</span>. They are respectively probabilistic extensions of Bernoulli polynomials of order <span>\\(r\\)</span> and multi-poly-Bernoulli polynomials. We find explicit expressions, certain related identities and some properties for them. In addition, we treat the special cases of Poisson, gamma and Bernoulli random variables. </p><p> <b> DOI</b> 10.1134/S1061920824030087 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 3","pages":"450 - 460"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824030087","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(Y\) be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to study probabilistic Bernoulli polynomials of order \(r\) associated with \(Y\) and probabilistic multi-poly-Bernoulli polynomials associated with \(Y\). They are respectively probabilistic extensions of Bernoulli polynomials of order \(r\) and multi-poly-Bernoulli polynomials. We find explicit expressions, certain related identities and some properties for them. In addition, we treat the special cases of Poisson, gamma and Bernoulli random variables.

DOI 10.1134/S1061920824030087

多伯努利概率多项式和数的明确公式
让 \(Y\) 是一个随机变量,它的矩生成函数存在于原点附近。本文的目的是研究与 \(Y\) 相关的概率伯努利多项式和概率多聚伯努利多项式。它们分别是伯努利多项式和多聚伯努利多项式的概率扩展。我们为它们找到了明确的表达式、某些相关的等式和一些性质。此外,我们还处理了泊松、伽马和伯努利随机变量的特例。 doi 10.1134/s1061920824030087
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信