Frölicher spectral sequence of compact complex manifolds with special Hermitian metrics

IF 0.6 3区 数学 Q3 MATHEMATICS
Adela Latorre, Luis Ugarte, Raquel Villacampa
{"title":"Frölicher spectral sequence of compact complex manifolds with special Hermitian metrics","authors":"Adela Latorre,&nbsp;Luis Ugarte,&nbsp;Raquel Villacampa","doi":"10.1007/s10455-024-09972-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we focus on the interplay between the behaviour of the Frölicher spectral sequence and the existence of special Hermitian metrics on the manifold, such as balanced, SKT or generalized Gauduchon. The study of balanced metrics on nilmanifolds endowed with strongly non-nilpotent complex structures allows us to provide infinite families of compact balanced manifolds with Frölicher spectral sequence not degenerating at the second page. Moreover, this result is extended to non-degeneration at any arbitrary page. Similar results are obtained for the Frölicher spectral sequence of compact generalized Gauduchon manifolds. We also find a compact SKT manifold whose Frölicher spectral sequence does not degenerate at the second page, thus providing a counterexample to a conjecture by Popovici.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-024-09972-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09972-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we focus on the interplay between the behaviour of the Frölicher spectral sequence and the existence of special Hermitian metrics on the manifold, such as balanced, SKT or generalized Gauduchon. The study of balanced metrics on nilmanifolds endowed with strongly non-nilpotent complex structures allows us to provide infinite families of compact balanced manifolds with Frölicher spectral sequence not degenerating at the second page. Moreover, this result is extended to non-degeneration at any arbitrary page. Similar results are obtained for the Frölicher spectral sequence of compact generalized Gauduchon manifolds. We also find a compact SKT manifold whose Frölicher spectral sequence does not degenerate at the second page, thus providing a counterexample to a conjecture by Popovici.

具有特殊赫米特度量的紧凑复流形的福禄克谱序列
在本文中,我们将重点研究弗洛里赫谱序的行为与流形上特殊赫米特度量(如平衡度量、SKT度量或广义高杜洪度量)的存在之间的相互作用。对禀赋强非零势复结构的无穷流形上的平衡度量的研究,使我们能够提供紧凑平衡流形的无穷族,这些流形的弗洛里赫谱序列在第二页不退化。此外,这一结果还扩展到了任意页的不退化。对于紧凑广义高杜洪流形的弗洛里赫谱序列,我们也得到了类似的结果。我们还发现了一个紧凑 SKT 流形,它的弗洛里赫谱序列在第二页不退化,从而为波波维奇的猜想提供了一个反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信