Loïc Bourdin, Fabien Caubet, Aymeric Jacob de Cordemoy
{"title":"Sensitivity Analysis and Optimal Control for a Friction Problem in the Linear Elastic Model","authors":"Loïc Bourdin, Fabien Caubet, Aymeric Jacob de Cordemoy","doi":"10.1007/s00245-024-10156-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates, without any regularization procedure, the sensitivity analysis of a mechanical friction problem involving the (nonsmooth) Tresca friction law in the linear elastic model. To this aim a recent methodology based on advanced tools from convex and variational analyses is used. Precisely we express the solution to the so-called Tresca friction problem thanks to the proximal operator associated with the corresponding Tresca friction functional. Then, using an extended version of twice epi-differentiability, we prove the differentiability of the solution to the parameterized Tresca friction problem, characterizing its derivative as the solution to a boundary value problem involving tangential Signorini’s unilateral conditions. Finally our result is used to investigate and numerically solve an optimal control problem associated with the Tresca friction model.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"90 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10156-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates, without any regularization procedure, the sensitivity analysis of a mechanical friction problem involving the (nonsmooth) Tresca friction law in the linear elastic model. To this aim a recent methodology based on advanced tools from convex and variational analyses is used. Precisely we express the solution to the so-called Tresca friction problem thanks to the proximal operator associated with the corresponding Tresca friction functional. Then, using an extended version of twice epi-differentiability, we prove the differentiability of the solution to the parameterized Tresca friction problem, characterizing its derivative as the solution to a boundary value problem involving tangential Signorini’s unilateral conditions. Finally our result is used to investigate and numerically solve an optimal control problem associated with the Tresca friction model.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.