{"title":"Resistive Measurement Method for MQ Sensors Based on ADCs of Microcontrollers","authors":"Sanya Kaunkid;Apinan Aurasopon;Wanchai Khamsen;Chiraphon Takeang;Nawarat Piladaeng;Jaime Lloret","doi":"10.1109/ACCESS.2024.3472697","DOIUrl":null,"url":null,"abstract":"This paper proposes a system for measuring unknown resistances for metal oxide MQ gas sensors. The circuit configuration is based on the Anderson current loop interface, which connects directly to an Arduino Mega 2560. We analyze errors arising from variations in supply voltage of conventional divider circuits, including those introduced by the Analog-to-Digital Conversion (ADC) of microcontroller. To enhance the accuracy of resistance measurements, a voting technique for selecting the optimal unknown resistances is introduced. In this technique, the digital voltage at each node is analyzed to determine the frequency of occurrence of each level. If a particular voltage level has a frequency of occurrence greater than the reference threshold k, it is selected. If no voltage level meets this criterion, the average of the observed voltage levels is used. From the experimental results, unknown resistances were measured in the range of 362 – 15,\n<inline-formula> <tex-math>$397~\\Omega $ </tex-math></inline-formula>\n with a maximum approximated error of 0.55% with \n<inline-formula> <tex-math>$k =90$ </tex-math></inline-formula>\n%, while the gas content was measured with a maximum error of approximately 0.24% under conditions of power supply voltage fluctuation from 4.9 to 5.1 V.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"144364-144376"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704671","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704671/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a system for measuring unknown resistances for metal oxide MQ gas sensors. The circuit configuration is based on the Anderson current loop interface, which connects directly to an Arduino Mega 2560. We analyze errors arising from variations in supply voltage of conventional divider circuits, including those introduced by the Analog-to-Digital Conversion (ADC) of microcontroller. To enhance the accuracy of resistance measurements, a voting technique for selecting the optimal unknown resistances is introduced. In this technique, the digital voltage at each node is analyzed to determine the frequency of occurrence of each level. If a particular voltage level has a frequency of occurrence greater than the reference threshold k, it is selected. If no voltage level meets this criterion, the average of the observed voltage levels is used. From the experimental results, unknown resistances were measured in the range of 362 – 15,
$397~\Omega $
with a maximum approximated error of 0.55% with
$k =90$
%, while the gas content was measured with a maximum error of approximately 0.24% under conditions of power supply voltage fluctuation from 4.9 to 5.1 V.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.