Mohamed Moustafa;Muhammad Ali Farooq;Amr Elrasad;Joseph Lemley;Peter Corcoran
{"title":"Visual Cardiac Signal Classifiers: A Deep Learning Classification Approach for Heart Signal Estimation From Video","authors":"Mohamed Moustafa;Muhammad Ali Farooq;Amr Elrasad;Joseph Lemley;Peter Corcoran","doi":"10.1109/ACCESS.2024.3472508","DOIUrl":null,"url":null,"abstract":"Heart rate is a crucial metric in health monitoring. Traditional computer vision solutions estimate cardiac signals by detecting physical manifestations of heartbeats, such as facial discoloration caused by blood oxygenation changes, from subject videos using regression methods. As continuous signals are more complex and expensive to de-noise, this study introduces an alternative approach, employing end-to-end classification models to remotely derive a discrete representation of cardiac signals from face videos. These visual cardiac signal classifiers are trained on discretized cardiac signals, a novel pre-processing method with limited precedent in health monitoring literature. Consequently, various methods to convert continuous cardiac signals into binary form are presented, and their impact on training is evaluated. An implementation of this approach, the temporal shift convolutional attention binary classifier, is presented using the regression-based convolutional attention network architecture. The classifier and a baseline regression model are trained and tested using publicly available and locally collected datasets designed for heart signal detection from face video. The model performance is then assessed based on the heart rate error from the extracted cardiac signals. Results show the proposed method outperforms the baseline on the UBFC-rPPG dataset, reducing cross-dataset root mean square error from 2.33 to 1.63 beats per minute. However, both models struggled to generalize to the PURE dataset, with root mean square errors of 12.40 and 16.29 beats per minute, respectively. Additionally, the proposed approach reduces the computational complexity of model output post-processing, enhancing its suitability for real-time applications and deployment on systems with restricted resources.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"144377-144394"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10703044","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10703044/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Heart rate is a crucial metric in health monitoring. Traditional computer vision solutions estimate cardiac signals by detecting physical manifestations of heartbeats, such as facial discoloration caused by blood oxygenation changes, from subject videos using regression methods. As continuous signals are more complex and expensive to de-noise, this study introduces an alternative approach, employing end-to-end classification models to remotely derive a discrete representation of cardiac signals from face videos. These visual cardiac signal classifiers are trained on discretized cardiac signals, a novel pre-processing method with limited precedent in health monitoring literature. Consequently, various methods to convert continuous cardiac signals into binary form are presented, and their impact on training is evaluated. An implementation of this approach, the temporal shift convolutional attention binary classifier, is presented using the regression-based convolutional attention network architecture. The classifier and a baseline regression model are trained and tested using publicly available and locally collected datasets designed for heart signal detection from face video. The model performance is then assessed based on the heart rate error from the extracted cardiac signals. Results show the proposed method outperforms the baseline on the UBFC-rPPG dataset, reducing cross-dataset root mean square error from 2.33 to 1.63 beats per minute. However, both models struggled to generalize to the PURE dataset, with root mean square errors of 12.40 and 16.29 beats per minute, respectively. Additionally, the proposed approach reduces the computational complexity of model output post-processing, enhancing its suitability for real-time applications and deployment on systems with restricted resources.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.