A Novel Optimized Deep Learning Model for Canola Crop Yield Prediction on Edge Devices

Stephany Valarezo-Plaza;Julio Torres-Tello;Keshav D. Singh;Steve J. Shirtliffe;S. Deivalakshmi;Seok-Bum Ko
{"title":"A Novel Optimized Deep Learning Model for Canola Crop Yield Prediction on Edge Devices","authors":"Stephany Valarezo-Plaza;Julio Torres-Tello;Keshav D. Singh;Steve J. Shirtliffe;S. Deivalakshmi;Seok-Bum Ko","doi":"10.1109/TAFE.2024.3414953","DOIUrl":null,"url":null,"abstract":"The escalating global demand for food, coupled with challenges in sustaining crop production, deteriorating ocean health, and depleting natural resources, underscores the critical role of agricultural technology. This article addresses the imperative of developing an optimal deep-learning model for predicting canola crop yield using hyperspectral images captured by drone flights. Our primary objective is to identify the most efficient model in terms of performance and size, considering the storage limitations on edge devices like Raspberry Pi 4 (RPi4). We start with the baseline 1D\n<italic>_</i>\nCNN model, which achieves an \n<inline-formula><tex-math>$R^{2}$</tex-math></inline-formula>\n score of 0.82, and compress it into the proposed \n<italic>fs_model</i>\n (fp32). To achieve the compression, we apply pruning through sparsity and feature selection using SHAP values. Further reduction in model size is accomplished by quantizing the weights of the proposed model to a lower precision, such as int16. This combined approach substantially decreases the proposed model's size by approximately 92.6% and inference time by approximately ×9013 in comparison to the baseline 1D\n<italic>_</i>\nCNN model. In addition, we propose the novel \n<italic>fsp_model</i>\n posit(8,3) that uses posit quantization to further reduce the computation requirements compared to the proposed \n<italic>fs_model</i>\n (int16). Our findings indicate that the utilization of posit numbers enables us to shrink the model size to 94% of the original base model, while only reducing the \n<inline-formula><tex-math>$R^{2}$</tex-math></inline-formula>\n score by 5.7%.","PeriodicalId":100637,"journal":{"name":"IEEE Transactions on AgriFood Electronics","volume":"2 2","pages":"436-444"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on AgriFood Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10577427/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating global demand for food, coupled with challenges in sustaining crop production, deteriorating ocean health, and depleting natural resources, underscores the critical role of agricultural technology. This article addresses the imperative of developing an optimal deep-learning model for predicting canola crop yield using hyperspectral images captured by drone flights. Our primary objective is to identify the most efficient model in terms of performance and size, considering the storage limitations on edge devices like Raspberry Pi 4 (RPi4). We start with the baseline 1D _ CNN model, which achieves an $R^{2}$ score of 0.82, and compress it into the proposed fs_model (fp32). To achieve the compression, we apply pruning through sparsity and feature selection using SHAP values. Further reduction in model size is accomplished by quantizing the weights of the proposed model to a lower precision, such as int16. This combined approach substantially decreases the proposed model's size by approximately 92.6% and inference time by approximately ×9013 in comparison to the baseline 1D _ CNN model. In addition, we propose the novel fsp_model posit(8,3) that uses posit quantization to further reduce the computation requirements compared to the proposed fs_model (int16). Our findings indicate that the utilization of posit numbers enables us to shrink the model size to 94% of the original base model, while only reducing the $R^{2}$ score by 5.7%.
用于边缘设备油菜籽作物产量预测的新型优化深度学习模型
全球对粮食的需求不断攀升,同时还面临着作物持续生产、海洋健康恶化和自然资源枯竭等挑战,这凸显了农业技术的关键作用。本文探讨了利用无人机飞行捕获的高光谱图像开发预测油菜籽作物产量的最佳深度学习模型的必要性。考虑到 Raspberry Pi 4(RPi4)等边缘设备的存储限制,我们的主要目标是确定性能和大小方面最有效的模型。我们从基线 1D_CNN 模型开始,该模型的 $R^{2}$ 得分为 0.82,然后将其压缩为建议的 fs_model (fp32)。为了实现压缩,我们通过稀疏性和使用 SHAP 值的特征选择进行剪枝。为了进一步缩小模型大小,我们将拟议模型的权重量化为较低精度,如 int16。与基线 1D_CNN 模型相比,这种组合方法将拟议模型的大小大幅减少了约 92.6%,推理时间减少了约 ×9013。此外,我们还提出了新颖的 fsp_model posit(8,3),它使用 posit 量化,与提出的 fs_model (int16) 相比,进一步降低了计算要求。我们的研究结果表明,利用 posit 数字可以将模型大小缩小到原始基础模型的 94%,而 $R^{2}$ 分数仅降低了 5.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信