Patricia Itzenhäuser, Ferdinand Max Wachter, Laura Lehmann, Michelle Rajkovic, Thorsten Benter and Walter Wißdorf*,
{"title":"Dynamics of the Aspiration of Charged Droplets into a LC-ESI-MS System","authors":"Patricia Itzenhäuser, Ferdinand Max Wachter, Laura Lehmann, Michelle Rajkovic, Thorsten Benter and Walter Wißdorf*, ","doi":"10.1021/jasms.4c0023810.1021/jasms.4c00238","DOIUrl":null,"url":null,"abstract":"<p >Electrospray ionization (ESI) enables coupling between liquid chromatography (LC) and mass spectrometry (MS). Since it is a gentle ionization method, it is frequently used for the analysis of large biomolecules. In recent years, several experimental setups have demonstrated that the use of ESI results in the formation of charged droplets that are aspirated into the vacuum systems of mass spectrometers. This results in a variety of consequences, such as instrument contamination, which can impede the analytical performance. We investigate the signatures of aspirated charged droplets with a commercial LC-ESI-MS system at analytical conditions. Previous observations without LC coupling are reproduced and show that significant droplet aspiration is probably taking place at analytical LC-ESI-MS conditions. This common phenomenon likely decreases the instrument sensitivity. Analyte can be released by isolation and fragmentation of droplet fragments; thus, aspirated droplets can mask analyte even in the mass analyzer region. The complex morphology of droplet MS/MS mass spectra is highly reproducible at the same experimental conditions. This implies the existence of distinct molecular reaction pathways of the droplet fragments. To assess the effect of droplet aspiration on analytical applications, relevant method and ion source parameters, which are commonly varied during method optimization, were investigated. Further variations of the solvent composition revealed that the aspirated droplets and their fragmentation are particularly sensitive to the solvent composition and thus also to the LC solvent gradient in an analytical experiment.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jasms.4c00238","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Electrospray ionization (ESI) enables coupling between liquid chromatography (LC) and mass spectrometry (MS). Since it is a gentle ionization method, it is frequently used for the analysis of large biomolecules. In recent years, several experimental setups have demonstrated that the use of ESI results in the formation of charged droplets that are aspirated into the vacuum systems of mass spectrometers. This results in a variety of consequences, such as instrument contamination, which can impede the analytical performance. We investigate the signatures of aspirated charged droplets with a commercial LC-ESI-MS system at analytical conditions. Previous observations without LC coupling are reproduced and show that significant droplet aspiration is probably taking place at analytical LC-ESI-MS conditions. This common phenomenon likely decreases the instrument sensitivity. Analyte can be released by isolation and fragmentation of droplet fragments; thus, aspirated droplets can mask analyte even in the mass analyzer region. The complex morphology of droplet MS/MS mass spectra is highly reproducible at the same experimental conditions. This implies the existence of distinct molecular reaction pathways of the droplet fragments. To assess the effect of droplet aspiration on analytical applications, relevant method and ion source parameters, which are commonly varied during method optimization, were investigated. Further variations of the solvent composition revealed that the aspirated droplets and their fragmentation are particularly sensitive to the solvent composition and thus also to the LC solvent gradient in an analytical experiment.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives