Chad R. Weisbrod*, Amy M. McKenna and Christopher L. Hendrickson,
{"title":"Selective Gas-Phase Depletion of Chemical Contaminants in Dissolved Organic Matter Increases Compositional Coverage by FT-ICR Mass Spectrometry","authors":"Chad R. Weisbrod*, Amy M. McKenna and Christopher L. Hendrickson, ","doi":"10.1021/jasms.4c0026110.1021/jasms.4c00261","DOIUrl":null,"url":null,"abstract":"<p >Fourier transform ion cyclotron resonance mass spectrometry of dissolved organic matter (DOM) extracted from environmental samples provides molecular speciation that enables visualization of compositional trends in the fate and cycling of biogenic and anthropogenic organics. Often, chemical contamination is introduced during field sampling (i.e., remote locations, cannot use glass). Further, preconcentration of DOM by solid-phase extraction often results in chemical contamination. When chemical noise is a dominant fraction of the ion signal, mass spectral performance is degraded by reduction of the ion trap analyte accumulation capacity and enhanced ion cloud dephasing during ICR detection. We have developed gas-phase ion depletion of unwanted chemical contaminants during ion injection into the linear RF ion trap of the hybrid linear ion trap 21 T FT-ICR mass spectrometer that improves detection of analytes by removing unwanted chemical noise. We demonstrate improvements in signal-to-noise ratio, dynamic range, and the number of observed analytes in dissolved organic matter samples that results in a 40–100% increase in the number of identified analytes. In many cases, the number of peaks observed per nominal mass more than doubles over select <i>m</i>/<i>z</i> regions. This gas-phase “clean-up” can salvage precious samples challenged by sampling location, sample volume, or collection protocols that cannot be avoided and maximizes the compositional information obtained. Further, this approach is generalizable and extendable to any hybrid linear ion trap instrument platform (e.g., LTQ-Orbitrap or linear ion trap-TOF). We highlight the power of gas-phase depletion with electrospray ionization, but this method is also applicable to other ionization modes.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jasms.4c00261","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Fourier transform ion cyclotron resonance mass spectrometry of dissolved organic matter (DOM) extracted from environmental samples provides molecular speciation that enables visualization of compositional trends in the fate and cycling of biogenic and anthropogenic organics. Often, chemical contamination is introduced during field sampling (i.e., remote locations, cannot use glass). Further, preconcentration of DOM by solid-phase extraction often results in chemical contamination. When chemical noise is a dominant fraction of the ion signal, mass spectral performance is degraded by reduction of the ion trap analyte accumulation capacity and enhanced ion cloud dephasing during ICR detection. We have developed gas-phase ion depletion of unwanted chemical contaminants during ion injection into the linear RF ion trap of the hybrid linear ion trap 21 T FT-ICR mass spectrometer that improves detection of analytes by removing unwanted chemical noise. We demonstrate improvements in signal-to-noise ratio, dynamic range, and the number of observed analytes in dissolved organic matter samples that results in a 40–100% increase in the number of identified analytes. In many cases, the number of peaks observed per nominal mass more than doubles over select m/z regions. This gas-phase “clean-up” can salvage precious samples challenged by sampling location, sample volume, or collection protocols that cannot be avoided and maximizes the compositional information obtained. Further, this approach is generalizable and extendable to any hybrid linear ion trap instrument platform (e.g., LTQ-Orbitrap or linear ion trap-TOF). We highlight the power of gas-phase depletion with electrospray ionization, but this method is also applicable to other ionization modes.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives