Pablo R. B. Oliveira, Dennys Leyva, Lilian V. Tose, Chad Weisbrod, Anton N. Kozhinov, Konstantin O. Nagornov, Yury O. Tsybin and Francisco Fernandez-Lima*,
{"title":"Revisiting Dissolved Organic Matter Analysis Using High-Resolution Trapped Ion Mobility and FT-ICR Mass Spectrometry","authors":"Pablo R. B. Oliveira, Dennys Leyva, Lilian V. Tose, Chad Weisbrod, Anton N. Kozhinov, Konstantin O. Nagornov, Yury O. Tsybin and Francisco Fernandez-Lima*, ","doi":"10.1021/jasms.4c0023210.1021/jasms.4c00232","DOIUrl":null,"url":null,"abstract":"<p >The molecular level characterization of complex mixtures remains an analytical challenge. We have shown that the integration of complementary, high-resolution, gas-phase separations allows for chemical formula level isomeric content description. In the current work, we revisited the current challenges associated with the analysis of dissolved organic matter using high-resolution trapped ion mobility separation (TIMS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). In particular, we evaluated the separation capabilities provided by TIMS-MS compared to MS alone, the use of ICR complementary data acquisition (DAQ) systems and transient processing strategies, ICR cell geometries (e.g., Infinity cell vs harmonized cell), and magnetic field strengths (7 T vs 9.4 T vs 21 T) for the case of a Harney River DOM sample. Results showed that the external high-performance DAQ enables direct representation of mass spectra in absorption mode FT (aFT), doubling the MS resolution compared to the default magnitude mode FT (mFT). Changes between half- vs full-apodization result in greater MS signal/noise vs superior MS resolving power (RP); in the case of DOM analysis, a 45% increase in assigned formulas is observed when employing the DAQ half (Kaiser-type)-apodization window and aFT when compared to the default instrument mFT. Results showed the advantages of reprocessing 2D-TIMS-FT-ICR MS data with higher RP and magnetic field chemical formulas generated list acquired (e.g., 21 T led to a 24% increase in isomers reported) or the implementation of alternative strategies.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jasms.4c00232","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The molecular level characterization of complex mixtures remains an analytical challenge. We have shown that the integration of complementary, high-resolution, gas-phase separations allows for chemical formula level isomeric content description. In the current work, we revisited the current challenges associated with the analysis of dissolved organic matter using high-resolution trapped ion mobility separation (TIMS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). In particular, we evaluated the separation capabilities provided by TIMS-MS compared to MS alone, the use of ICR complementary data acquisition (DAQ) systems and transient processing strategies, ICR cell geometries (e.g., Infinity cell vs harmonized cell), and magnetic field strengths (7 T vs 9.4 T vs 21 T) for the case of a Harney River DOM sample. Results showed that the external high-performance DAQ enables direct representation of mass spectra in absorption mode FT (aFT), doubling the MS resolution compared to the default magnitude mode FT (mFT). Changes between half- vs full-apodization result in greater MS signal/noise vs superior MS resolving power (RP); in the case of DOM analysis, a 45% increase in assigned formulas is observed when employing the DAQ half (Kaiser-type)-apodization window and aFT when compared to the default instrument mFT. Results showed the advantages of reprocessing 2D-TIMS-FT-ICR MS data with higher RP and magnetic field chemical formulas generated list acquired (e.g., 21 T led to a 24% increase in isomers reported) or the implementation of alternative strategies.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives