Mechanism of action of “cistanche deserticola–Polygala” in treating Alzheimer's disease based on network pharmacology methods and molecular docking analysis
{"title":"Mechanism of action of “cistanche deserticola–Polygala” in treating Alzheimer's disease based on network pharmacology methods and molecular docking analysis","authors":"Shaoqiang Wang, Yifan Wang","doi":"10.1049/syb2.12100","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>This article used network pharmacology, molecular docking, GEO analysis, and Gene Set Enrichment Analysis to obtain 38 main chemical components and 66 corresponding targets involved in Alzheimer's disease (AD) treatment in \"Cistanche deserticola-Polygala\". Through further Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analysis, we obtained AD signalling pathways, calcium signalling pathways, and other signalling pathways related to the treatment of AD with “Cistanche deserticola-Polygala”. Molecular docking showed that most of the core chemical components had good binding ability with the core targets. This article aims to reveal the mechanism of “Cistanche deserticola-Polygala” in treating AD and provide a basis for the treatment of AD with “Cistanche deserticola-Polygala”.</p>\n </section>\n </div>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"18 6","pages":"271-284"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665837/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12100","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This article used network pharmacology, molecular docking, GEO analysis, and Gene Set Enrichment Analysis to obtain 38 main chemical components and 66 corresponding targets involved in Alzheimer's disease (AD) treatment in "Cistanche deserticola-Polygala". Through further Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analysis, we obtained AD signalling pathways, calcium signalling pathways, and other signalling pathways related to the treatment of AD with “Cistanche deserticola-Polygala”. Molecular docking showed that most of the core chemical components had good binding ability with the core targets. This article aims to reveal the mechanism of “Cistanche deserticola-Polygala” in treating AD and provide a basis for the treatment of AD with “Cistanche deserticola-Polygala”.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.