Feng-Ying Zhu MM , Ying-Min Chen MD , Shu-Min Ma MM , Qiu Shao MM
{"title":"The value of quantitative dual-energy CT parameters in predicting delayed haemorrhage after thrombectomy in acute ischaemic stroke","authors":"Feng-Ying Zhu MM , Ying-Min Chen MD , Shu-Min Ma MM , Qiu Shao MM","doi":"10.1016/j.jstrokecerebrovasdis.2024.108083","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study investigates the predictive value of dual-energy CT Rho/Z quantitative parameters for delayed hemorrhage post-thrombectomy in patients with acute ischemic stroke</div></div><div><h3>Materials and Methods</h3><div>A retrospective analysis was conducted on 80 patients who underwent dual-energy CT after thrombectomy for acute ischemic stroke. Patients were divided into delayed hemorrhage/no delayed hemorrhage, symptomatic intracranial hemorrhage/asymptomatic intracranial hemorrhage and cerebral parenchymal hematoma/no cerebral parenchymal hematoma groups</div></div><div><h3>Results</h3><div>The quantitative parameters significantly associated with delayed hemorrhage are DEI and Zeff (p < 0.001), with the optimal cutoff values for DEI and Zeff being 0.045 and 9.355, respectively. The quantitative parameters significantly associated with symptomatic intracranial hemorrhage are DEI and Zeff (p < 0.001), with the optimal cutoff values being 0.064 and 9.422, respectively. The parameters significantly associated with cerebral parenchymal hematoma are DEI and Zeff (p < 0.001), with the optimal cutoff values for DEI and Zeff being 0.058 and 9.09, respectively</div></div><div><h3>Conclusion</h3><div>The DEI and Zeff parameters derived from dual-energy CT Rho/Z analysis are valuable in predicting delayed hemorrhage, symptomatic intracranial hemorrhage, and cerebral parenchymal hematoma in patients with acute ischemic stroke following thrombectomy.</div></div>","PeriodicalId":54368,"journal":{"name":"Journal of Stroke & Cerebrovascular Diseases","volume":"33 12","pages":"Article 108083"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stroke & Cerebrovascular Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1052305724005275","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
This study investigates the predictive value of dual-energy CT Rho/Z quantitative parameters for delayed hemorrhage post-thrombectomy in patients with acute ischemic stroke
Materials and Methods
A retrospective analysis was conducted on 80 patients who underwent dual-energy CT after thrombectomy for acute ischemic stroke. Patients were divided into delayed hemorrhage/no delayed hemorrhage, symptomatic intracranial hemorrhage/asymptomatic intracranial hemorrhage and cerebral parenchymal hematoma/no cerebral parenchymal hematoma groups
Results
The quantitative parameters significantly associated with delayed hemorrhage are DEI and Zeff (p < 0.001), with the optimal cutoff values for DEI and Zeff being 0.045 and 9.355, respectively. The quantitative parameters significantly associated with symptomatic intracranial hemorrhage are DEI and Zeff (p < 0.001), with the optimal cutoff values being 0.064 and 9.422, respectively. The parameters significantly associated with cerebral parenchymal hematoma are DEI and Zeff (p < 0.001), with the optimal cutoff values for DEI and Zeff being 0.058 and 9.09, respectively
Conclusion
The DEI and Zeff parameters derived from dual-energy CT Rho/Z analysis are valuable in predicting delayed hemorrhage, symptomatic intracranial hemorrhage, and cerebral parenchymal hematoma in patients with acute ischemic stroke following thrombectomy.
期刊介绍:
The Journal of Stroke & Cerebrovascular Diseases publishes original papers on basic and clinical science related to the fields of stroke and cerebrovascular diseases. The Journal also features review articles, controversies, methods and technical notes, selected case reports and other original articles of special nature. Its editorial mission is to focus on prevention and repair of cerebrovascular disease. Clinical papers emphasize medical and surgical aspects of stroke, clinical trials and design, epidemiology, stroke care delivery systems and outcomes, imaging sciences and rehabilitation of stroke. The Journal will be of special interest to specialists involved in caring for patients with cerebrovascular disease, including neurologists, neurosurgeons and cardiologists.