{"title":"The methionine cycle and its cancer implications","authors":"Valentina Tassinari, Wei Jia, Wen-Lian Chen, Eleonora Candi, Gerry Melino","doi":"10.1038/s41388-024-03122-0","DOIUrl":null,"url":null,"abstract":"The essential amino acid methionine is a crucial regulator of sulfur metabolism in a variety of interconnected biochemical pathways. The methionine cycle is intricately linked to the folate cycle, forming the one-carbon metabolism, a crucial regulator of S-adenosylmethionine, SAM. Recent work highlights methionine’s critical role in tumor growth and progression, maintaining polyamine synthesis, and playing a crucial role in the regulation of SAM both in altered chromatin states, depending on p53 status, as well as facilitating m6A methylation of NR4A2 mRNA, hence regulating proliferation in esophageal carcinoma. Accordingly, Celecoxib, a specific NR4A2 inhibitor, is a potentially powerful inhibitor of tumor growth at least in this specific model. Additionally, formaldehyde, from endogenous or exogenous sources, can directly regulate both SAM steady-state-levels and the one-carbon metabolism, with relevant implication in cancer progression. These recent scientific advancements have provided a deeper understanding of the molecular mechanisms involved in cancer development, and its potential therapeutic regulation.","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":"43 48","pages":"3483-3488"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41388-024-03122-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41388-024-03122-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The essential amino acid methionine is a crucial regulator of sulfur metabolism in a variety of interconnected biochemical pathways. The methionine cycle is intricately linked to the folate cycle, forming the one-carbon metabolism, a crucial regulator of S-adenosylmethionine, SAM. Recent work highlights methionine’s critical role in tumor growth and progression, maintaining polyamine synthesis, and playing a crucial role in the regulation of SAM both in altered chromatin states, depending on p53 status, as well as facilitating m6A methylation of NR4A2 mRNA, hence regulating proliferation in esophageal carcinoma. Accordingly, Celecoxib, a specific NR4A2 inhibitor, is a potentially powerful inhibitor of tumor growth at least in this specific model. Additionally, formaldehyde, from endogenous or exogenous sources, can directly regulate both SAM steady-state-levels and the one-carbon metabolism, with relevant implication in cancer progression. These recent scientific advancements have provided a deeper understanding of the molecular mechanisms involved in cancer development, and its potential therapeutic regulation.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.