Clerodane diterpene 3-deoxycaryoptinol (Clerodin) selectively induces apoptosis in human monocytic leukemia (THP-1) cells and upregulates apoptotic protein caspase-3.
{"title":"Clerodane diterpene 3-deoxycaryoptinol (Clerodin) selectively induces apoptosis in human monocytic leukemia (THP-1) cells and upregulates apoptotic protein caspase-3.","authors":"Bharathkumar Nagaraj, Arvind Sivasubramanian, Shazia Anjum Musthafa, Sadiq Muhammad, Aswathy Karanath Anilkumar, Ganesh Munuswamy-Ramanujam, Chinnaperumal Kamaraj, Sivaraman Dhanasekaran, Vetriselvan Subramaniyan","doi":"10.1016/j.freeradbiomed.2024.10.275","DOIUrl":null,"url":null,"abstract":"<p><p>3-deoxycaryoptinol (Clerodin) is a clerodane diterpene isolated from the leaves of Clerodendrum infortunatum. The present research investigates the anticancer therapeutic efficacy of clerodin in human monocytic leukemic (THP-1) cells for the first time. In vitro assay using THP-1 cells showed the cytotoxic ability of clerodin. Further, Annexin-V(FITC)/PI and intracellular ROS (DCFDA) assays carried out using flow cytometry, and confocal laser scanning microscopy confirmed the apoptotic potential of clerodin. Moreover, the western blot was used to detect mitochondrial apoptosis of THP-1 cells. RT-PCR, ELISA, and western blot analysis clearly indicated that clerodin significantly increased the expression of pro-apoptotic marker caspase-3 in THP-1 cells. clerodin also selectively targeted the G2/M phase of THP-1 cells, a key feature for anticancer molecules. Importantly, the clerodin did not exhibit cytotoxicity against human peripheral blood cells. These properties of clerodin make it a potential chemotherapeutic agent that can selectively induce apoptosis in leukemia-like cancer cells.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.10.275","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
3-deoxycaryoptinol (Clerodin) is a clerodane diterpene isolated from the leaves of Clerodendrum infortunatum. The present research investigates the anticancer therapeutic efficacy of clerodin in human monocytic leukemic (THP-1) cells for the first time. In vitro assay using THP-1 cells showed the cytotoxic ability of clerodin. Further, Annexin-V(FITC)/PI and intracellular ROS (DCFDA) assays carried out using flow cytometry, and confocal laser scanning microscopy confirmed the apoptotic potential of clerodin. Moreover, the western blot was used to detect mitochondrial apoptosis of THP-1 cells. RT-PCR, ELISA, and western blot analysis clearly indicated that clerodin significantly increased the expression of pro-apoptotic marker caspase-3 in THP-1 cells. clerodin also selectively targeted the G2/M phase of THP-1 cells, a key feature for anticancer molecules. Importantly, the clerodin did not exhibit cytotoxicity against human peripheral blood cells. These properties of clerodin make it a potential chemotherapeutic agent that can selectively induce apoptosis in leukemia-like cancer cells.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.