An infrastructure for qualified data sharing and team science in late-stage translational spinal cord injury research

IF 4.6 2区 医学 Q1 NEUROSCIENCES
J. Russell Huie , Abel Torres-Espin , Jeffrey Sacramento , Anastasia V. Keller , Wilsaan M. Joiner , Ryan North , David J. Reinkensmeyer , Ephron S. Rosenzweig , Jacob Koffler , Mark H. Tuszynski , Carolyn J. Sparrey , Jessica L. Nielson , Michael S. Beattie , Jacqueline C. Bresnahan , Jeffrey S. Grethe , Adam R. Ferguson
{"title":"An infrastructure for qualified data sharing and team science in late-stage translational spinal cord injury research","authors":"J. Russell Huie ,&nbsp;Abel Torres-Espin ,&nbsp;Jeffrey Sacramento ,&nbsp;Anastasia V. Keller ,&nbsp;Wilsaan M. Joiner ,&nbsp;Ryan North ,&nbsp;David J. Reinkensmeyer ,&nbsp;Ephron S. Rosenzweig ,&nbsp;Jacob Koffler ,&nbsp;Mark H. Tuszynski ,&nbsp;Carolyn J. Sparrey ,&nbsp;Jessica L. Nielson ,&nbsp;Michael S. Beattie ,&nbsp;Jacqueline C. Bresnahan ,&nbsp;Jeffrey S. Grethe ,&nbsp;Adam R. Ferguson","doi":"10.1016/j.expneurol.2024.114995","DOIUrl":null,"url":null,"abstract":"<div><div>The complex and heterogeneous nature of spinal cord injury has limited translational bench-to-bedside results. The wide variety of data, including injury parameters, biochemical, histological, and behavioral outcome measures represent a ‘big data’ problem, calling for modern data science solutions. There are some instances in which SCI researchers collect sensitive data that needs to remain private, such as datasets designed to meet regulatory approval, sensitive intellectual property, and non-human primate studies. For these types of data, we have developed a Private Data Commons for SCI (PDC-SCI). Our objective is to give an overview of this novel data commons, describing how this type of commons works, how it can benefit the research community, and the cases in which it would be most useful. This private infrastructure is ideal for multi-lab transdisciplinary studies that require a well-organized, scalable data commons for rapid data sharing within a closed, distributed team. As a use-case for the PDC-SCI, we demonstrate the VA Gordon Mansfield SCI Consortium, in which multimodal data from behavior, biomechanics of injury, hospital records, imaging, and histology are integrated, shared, and analyzed to facilitate insights and knowledge discovery.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488624003212","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The complex and heterogeneous nature of spinal cord injury has limited translational bench-to-bedside results. The wide variety of data, including injury parameters, biochemical, histological, and behavioral outcome measures represent a ‘big data’ problem, calling for modern data science solutions. There are some instances in which SCI researchers collect sensitive data that needs to remain private, such as datasets designed to meet regulatory approval, sensitive intellectual property, and non-human primate studies. For these types of data, we have developed a Private Data Commons for SCI (PDC-SCI). Our objective is to give an overview of this novel data commons, describing how this type of commons works, how it can benefit the research community, and the cases in which it would be most useful. This private infrastructure is ideal for multi-lab transdisciplinary studies that require a well-organized, scalable data commons for rapid data sharing within a closed, distributed team. As a use-case for the PDC-SCI, we demonstrate the VA Gordon Mansfield SCI Consortium, in which multimodal data from behavior, biomechanics of injury, hospital records, imaging, and histology are integrated, shared, and analyzed to facilitate insights and knowledge discovery.
脊髓损伤后期转化研究中合格数据共享和团队科学的基础设施。
脊髓损伤的复杂性和异质性限制了从临床到临床的转化结果。包括损伤参数、生化、组织学和行为结果测量在内的各种数据是一个 "大数据 "问题,需要现代数据科学解决方案。在某些情况下,SCI 研究人员会收集一些需要保密的敏感数据,例如为满足监管审批而设计的数据集、敏感的知识产权和非人灵长类动物研究。针对这些类型的数据,我们开发了 SCI 私有数据公共空间(PDC-SCI)。我们的目标是概述这种新型数据共享机制,介绍这种共享机制的工作原理、如何使研究界受益以及在哪些情况下最有用。这种私人基础设施是多实验室跨学科研究的理想选择,因为这些研究需要一个组织良好、可扩展的数据共享空间,以便在一个封闭的分布式团队中快速共享数据。作为 PDC-SCI 的一个使用案例,我们展示了退伍军人事务部戈登-曼斯菲尔德 SCI 联合会,在该联合会中,来自行为、损伤生物力学、医院记录、成像和组织学的多模态数据得到了整合、共享和分析,以促进洞察力和知识发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Neurology
Experimental Neurology 医学-神经科学
CiteScore
10.10
自引率
3.80%
发文量
258
审稿时长
42 days
期刊介绍: Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信