γ-Glutamylcyclotransferase is transcriptionally regulated by c-Jun and controls proliferation of glioblastoma stem cells through Notch1 levels.

IF 4.8 3区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kozue Nose, Keiko Taniguchi, Mitsugu Fujita, Chiami Moyama, Masaya Mori, Mizuki Ishita, Tatsushi Yoshida, Hiromi Ii, Toshiyuki Sakai, Susumu Nakata
{"title":"γ-Glutamylcyclotransferase is transcriptionally regulated by c-Jun and controls proliferation of glioblastoma stem cells through Notch1 levels.","authors":"Kozue Nose, Keiko Taniguchi, Mitsugu Fujita, Chiami Moyama, Masaya Mori, Mizuki Ishita, Tatsushi Yoshida, Hiromi Ii, Toshiyuki Sakai, Susumu Nakata","doi":"10.1038/s41417-024-00835-y","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma stem cells (GSCs) have been reported to cause poor prognosis of glioblastoma by contributing to therapy resistance. γ-Glutamylcyclotransferase (GGCT) is highly expressed in various cancer types, including glioblastoma, and its inhibition suppresses cancer cell growth. However, the mechanism of GGCT overexpression and its function in GSCs are unknown. In this study, we show that GGCT is highly expressed in GSCs established from a mouse glioblastoma model and its knockdown suppresses their proliferation. Effects of NRas and its downstream transcription factor c-Jun on GGCT expression were analyzed; NRas knockdown reduced c-Jun and GGCT expression. Knockdown of c-Jun also reduced expression levels of GGCT and inhibited cell proliferation. Consistent with this, pharmacological inhibition of c-Jun with SP600125 reduced GGCT and inhibited GSC proliferation. Furthermore, the GGCT promoter-reporter assay with mutagenesis demonstrated that c-Jun regulates the activity of the GGCT promoter via AP-1 consensus sequence. Gene expression analysis revealed that GGCT knockdown showed a repressive effect on the Delta-Notch pathway and decreased Notch1 expression. Notch1 knockdown alone inhibited the GSC proliferation, confirming that Notch1 is functional in this model. Forced expression of the Notch1 intracellular domain restored the growth inhibitory effect of GGCT knockdown. Moreover, GGCT knockdown inhibited GSC tumorigenic potential in vivo. These results indicate that GGCT, whose expression is promoted by c-Jun, plays an important role in the proliferation and tumorigenic potential of GSCs, and that the phenotype caused by its knockdown is contributed by a decrease in Notch1. Thus, GGCT may represent a novel therapeutic target for attacking GSCs.</p>","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41417-024-00835-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma stem cells (GSCs) have been reported to cause poor prognosis of glioblastoma by contributing to therapy resistance. γ-Glutamylcyclotransferase (GGCT) is highly expressed in various cancer types, including glioblastoma, and its inhibition suppresses cancer cell growth. However, the mechanism of GGCT overexpression and its function in GSCs are unknown. In this study, we show that GGCT is highly expressed in GSCs established from a mouse glioblastoma model and its knockdown suppresses their proliferation. Effects of NRas and its downstream transcription factor c-Jun on GGCT expression were analyzed; NRas knockdown reduced c-Jun and GGCT expression. Knockdown of c-Jun also reduced expression levels of GGCT and inhibited cell proliferation. Consistent with this, pharmacological inhibition of c-Jun with SP600125 reduced GGCT and inhibited GSC proliferation. Furthermore, the GGCT promoter-reporter assay with mutagenesis demonstrated that c-Jun regulates the activity of the GGCT promoter via AP-1 consensus sequence. Gene expression analysis revealed that GGCT knockdown showed a repressive effect on the Delta-Notch pathway and decreased Notch1 expression. Notch1 knockdown alone inhibited the GSC proliferation, confirming that Notch1 is functional in this model. Forced expression of the Notch1 intracellular domain restored the growth inhibitory effect of GGCT knockdown. Moreover, GGCT knockdown inhibited GSC tumorigenic potential in vivo. These results indicate that GGCT, whose expression is promoted by c-Jun, plays an important role in the proliferation and tumorigenic potential of GSCs, and that the phenotype caused by its knockdown is contributed by a decrease in Notch1. Thus, GGCT may represent a novel therapeutic target for attacking GSCs.

γ-谷氨酰环基转移酶受c-Jun转录调控,并通过Notch1水平控制胶质母细胞瘤干细胞的增殖。
据报道,胶质母细胞瘤干细胞(GSCs)会导致耐药性,从而导致胶质母细胞瘤预后不良。γ-谷氨酰环基转移酶(GGCT)在包括胶质母细胞瘤在内的多种癌症类型中高表达,抑制该酶可抑制癌细胞生长。然而,GGCT 过表达的机制及其在 GSCs 中的功能尚不清楚。在本研究中,我们发现 GGCT 在小鼠胶质母细胞瘤模型建立的 GSCs 中高表达,并且其敲除抑制了 GSCs 的增殖。研究分析了NRas及其下游转录因子c-Jun对GGCT表达的影响;NRas敲除会降低c-Jun和GGCT的表达。敲除 c-Jun 也会降低 GGCT 的表达水平并抑制细胞增殖。与此相一致的是,用 SP600125 对 c-Jun 进行药理抑制可减少 GGCT 的表达并抑制 GSC 的增殖。此外,诱变 GGCT 启动子-报告子试验表明,c-Jun 通过 AP-1 共识序列调节 GGCT 启动子的活性。基因表达分析表明,GGCT基因敲除对Delta-Notch通路有抑制作用,并降低了Notch1的表达。单独敲除Notch1抑制了GSC的增殖,证实了Notch1在该模型中的功能。强制表达Notch1胞内结构域可恢复GGCT敲除的生长抑制作用。此外,GGCT敲除抑制了体内GSC的致瘤潜能。这些结果表明,由c-Jun促进表达的GGCT在GSC的增殖和致瘤潜能中起着重要作用,而其敲除导致的表型是由Notch1的减少促成的。因此,GGCT可能是攻击GSCs的一个新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer gene therapy
Cancer gene therapy 医学-生物工程与应用微生物
CiteScore
10.20
自引率
0.00%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair. Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信