{"title":"Edge-Oriented Adversarial Attack for Deep Gait Recognition","authors":"Saihui Hou, Zengbin Wang, Man Zhang, Chunshui Cao, Xu Liu, Yongzhen Huang","doi":"10.1007/s11263-024-02225-1","DOIUrl":null,"url":null,"abstract":"<p>Gait recognition is a non-intrusive method that captures unique walking patterns without subject cooperation, which has emerged as a promising technique across various fields. Recent studies based on Deep Neural Networks (DNNs) have notably improved the performance, however, the potential vulnerability inherent in DNNs and their resistance to interference in practical gait recognition systems remain under-explored. To fill the gap, in this paper, we focus on imperceptible adversarial attack for deep gait recognition and propose an edge-oriented attack strategy tailored for silhouette-based approaches. Specifically, we make a pioneering attempt to explore the intrinsic characteristics of binary silhouettes, with a primary focus on injecting noise perturbations into the edge area. This simple yet effective solution enables sparse attack in both the spatial and temporal dimensions, which largely ensures imperceptibility and simultaneously achieves high success rate. In particular, our solution is built on a unified framework, allowing seamless switching between untargeted and targeted attack modes. Extensive experiments conducted on in-the-lab and in-the-wild benchmarks validate the effectiveness of our attack strategy and emphasize the necessity to study adversarial attack and defense strategy in the near future.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"54 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02225-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Gait recognition is a non-intrusive method that captures unique walking patterns without subject cooperation, which has emerged as a promising technique across various fields. Recent studies based on Deep Neural Networks (DNNs) have notably improved the performance, however, the potential vulnerability inherent in DNNs and their resistance to interference in practical gait recognition systems remain under-explored. To fill the gap, in this paper, we focus on imperceptible adversarial attack for deep gait recognition and propose an edge-oriented attack strategy tailored for silhouette-based approaches. Specifically, we make a pioneering attempt to explore the intrinsic characteristics of binary silhouettes, with a primary focus on injecting noise perturbations into the edge area. This simple yet effective solution enables sparse attack in both the spatial and temporal dimensions, which largely ensures imperceptibility and simultaneously achieves high success rate. In particular, our solution is built on a unified framework, allowing seamless switching between untargeted and targeted attack modes. Extensive experiments conducted on in-the-lab and in-the-wild benchmarks validate the effectiveness of our attack strategy and emphasize the necessity to study adversarial attack and defense strategy in the near future.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.