Universality and Sharp Matrix Concentration Inequalities

IF 2.4 1区 数学 Q1 MATHEMATICS
Tatiana Brailovskaya, Ramon van Handel
{"title":"Universality and Sharp Matrix Concentration Inequalities","authors":"Tatiana Brailovskaya, Ramon van Handel","doi":"10.1007/s00039-024-00692-9","DOIUrl":null,"url":null,"abstract":"<p>We show that, under mild assumptions, the spectrum of a sum of independent random matrices is close to that of the Gaussian random matrix whose entries have the same mean and covariance. This nonasymptotic universality principle yields sharp matrix concentration inequalities for general sums of independent random matrices when combined with the Gaussian theory of Bandeira, Boedihardjo, and Van Handel. A key feature of the resulting theory is that it is applicable to a broad class of random matrix models that may have highly nonhomogeneous and dependent entries, which can be far outside the mean-field situation considered in classical random matrix theory. We illustrate the theory in applications to random graphs, matrix concentration inequalities for smallest singular values, sample covariance matrices, strong asymptotic freeness, and phase transitions in spiked models.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"49 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00692-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that, under mild assumptions, the spectrum of a sum of independent random matrices is close to that of the Gaussian random matrix whose entries have the same mean and covariance. This nonasymptotic universality principle yields sharp matrix concentration inequalities for general sums of independent random matrices when combined with the Gaussian theory of Bandeira, Boedihardjo, and Van Handel. A key feature of the resulting theory is that it is applicable to a broad class of random matrix models that may have highly nonhomogeneous and dependent entries, which can be far outside the mean-field situation considered in classical random matrix theory. We illustrate the theory in applications to random graphs, matrix concentration inequalities for smallest singular values, sample covariance matrices, strong asymptotic freeness, and phase transitions in spiked models.

普遍性与尖锐矩阵集中不等式
我们证明,在温和的假设条件下,独立随机矩阵之和的频谱接近于条目具有相同均值和协方差的高斯随机矩阵的频谱。这一非渐近普遍性原理与班德拉、博埃迪哈卓和范汉德尔的高斯理论相结合,可为一般的独立随机矩阵之和提供尖锐的矩阵集中不等式。由此产生的理论的一个主要特点是,它适用于一大类可能具有高度非均质和依赖项的随机矩阵模型,这可能远远超出了经典随机矩阵理论所考虑的均场情况。我们将在随机图、最小奇异值的矩阵集中不等式、样本协方差矩阵、强渐近自由性和尖峰模型的相变等应用中说明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信