Free Charge Carrier Generation by Visible-Light-Absorbing Organic Spacers in Ruddlesden–Popper Layered Perovskites

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Simon Nussbaum, Demetra Tsokkou, Aaron T. Frei, Dennis Friedrich, Jacques-E. Moser, Natalie Banerji, Jun-Ho Yum* and Kevin Sivula*, 
{"title":"Free Charge Carrier Generation by Visible-Light-Absorbing Organic Spacers in Ruddlesden–Popper Layered Perovskites","authors":"Simon Nussbaum,&nbsp;Demetra Tsokkou,&nbsp;Aaron T. Frei,&nbsp;Dennis Friedrich,&nbsp;Jacques-E. Moser,&nbsp;Natalie Banerji,&nbsp;Jun-Ho Yum* and Kevin Sivula*,&nbsp;","doi":"10.1021/jacs.4c0970610.1021/jacs.4c09706","DOIUrl":null,"url":null,"abstract":"<p >Incorporating organic semiconductor building blocks as spacer cations into layered hybrid perovskites provides an opportunity to develop new materials with novel optoelectronic properties, including nanoheterojunctions that afford spatial separation of electron and hole transport. However, identifying organics with suitable structure and electronic energy levels to selectively absorb visible light has been a challenge in the field. In this work, we introduce a new lead-halide-based Ruddlesden–Popper perovskite structure based on a visible-light-absorbing naphthalene-iminoimide cation (NDI-DAE). Thin films of (NDI-DAE)<sub>2</sub>PbI<sub>4</sub> show a quenched photoluminescence and transient absorption dynamics consistent with the formation of a charge transfer state or free charge carriers when either the inorganic or organic layer is photoexcited, suggesting the formation of a type II nanoheterostructure. Time-resolved microwave conductivity analysis supports free charge generation with sum mobilities up to 4 × 10<sup>–4</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>. Mixed halide (NDI-DAE)<sub>2</sub>Pb(I<sub><i>x</i></sub>Br<sub>1–<i>x</i></sub>)<sub>4</sub> films show modified inorganic layer band gaps and a photoluminescent reversed type I nanoheterostructure with high bromide content (e.g., for <i>x</i> = 0). At <i>x</i> = 0.5, transient absorption and microwave conductivity measurements provide strong evidence that selective visible-light absorbance by the NDI-DAE cation generates separated free carriers via hole transfer to the inorganic layer (leaving photogenerated electrons in the organic layer), which represents an important step toward enhancing light harvesting and affording the spatial separation of charge carrier transport in stable layered perovskite-based devices.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 40","pages":"27770–27778 27770–27778"},"PeriodicalIF":15.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c09706","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c09706","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Incorporating organic semiconductor building blocks as spacer cations into layered hybrid perovskites provides an opportunity to develop new materials with novel optoelectronic properties, including nanoheterojunctions that afford spatial separation of electron and hole transport. However, identifying organics with suitable structure and electronic energy levels to selectively absorb visible light has been a challenge in the field. In this work, we introduce a new lead-halide-based Ruddlesden–Popper perovskite structure based on a visible-light-absorbing naphthalene-iminoimide cation (NDI-DAE). Thin films of (NDI-DAE)2PbI4 show a quenched photoluminescence and transient absorption dynamics consistent with the formation of a charge transfer state or free charge carriers when either the inorganic or organic layer is photoexcited, suggesting the formation of a type II nanoheterostructure. Time-resolved microwave conductivity analysis supports free charge generation with sum mobilities up to 4 × 10–4 cm2 V–1 s–1. Mixed halide (NDI-DAE)2Pb(IxBr1–x)4 films show modified inorganic layer band gaps and a photoluminescent reversed type I nanoheterostructure with high bromide content (e.g., for x = 0). At x = 0.5, transient absorption and microwave conductivity measurements provide strong evidence that selective visible-light absorbance by the NDI-DAE cation generates separated free carriers via hole transfer to the inorganic layer (leaving photogenerated electrons in the organic layer), which represents an important step toward enhancing light harvesting and affording the spatial separation of charge carrier transport in stable layered perovskite-based devices.

Ruddlesden-Popper 层状过氧化物中吸收可见光的有机间隔物产生的自由电荷载流子
将有机半导体构件作为间隔阳离子并入层状杂化过氧化物中,为开发具有新型光电特性的新材料提供了机会,其中包括可实现电子和空穴传输空间分离的纳米超结。然而,确定具有合适结构和电子能级的有机物以选择性吸收可见光一直是该领域的一个挑战。在这项工作中,我们介绍了一种基于吸收可见光的萘-亚胺阳离子(NDI-DAE)的新型铅-卤化物基 Ruddlesden-Popper 包晶结构。(NDI-DAE)2PbI4 薄膜显示出淬灭光致发光和瞬态吸收动态,这与无机层或有机层受到光激发时形成的电荷转移态或自由电荷载流子相一致,表明形成了一种 II 型纳米异质结构。时间分辨微波电导分析支持自由电荷的产生,其总迁移率高达 4 × 10-4 cm2 V-1 s-1。混合卤化物 (NDI-DAE)2Pb(IxBr1-x)4 薄膜显示出改良的无机层带隙,并在溴含量较高时(如 x = 0 时)显示出光致发光的反向 I 型纳米异质结构。在 x = 0.5 时,瞬态吸收和微波电导测量结果有力地证明了 NDI-DAE 阳离子对可见光的选择性吸收会通过空穴传输到无机层(将光生电子留在有机层)产生分离的自由载流子,这是在稳定的层状过氧化物基器件中增强光收集和实现电荷载流子传输空间分离的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信