Anna Małkowska , Katerina Makarowa , Katarzyna Zawada , Maksymilian Grzelak , Aleksandra Zmysłowska
{"title":"Effect of curcumin on the embryotoxic effect of ethanol in a zebrafish model","authors":"Anna Małkowska , Katerina Makarowa , Katarzyna Zawada , Maksymilian Grzelak , Aleksandra Zmysłowska","doi":"10.1016/j.tiv.2024.105951","DOIUrl":null,"url":null,"abstract":"<div><div>Curcumin, a natural polyphenol found in the turmeric plant, has been shown to have anti-inflammatory and antioxidant properties. It has been widely studied for its potential protective effect against various health conditions, including ethanol-induced malformation.</div><div>Ethanol exposure during pregnancy can lead to various developmental abnormalities, known as fetal alcohol syndrome (FAS) and fetal alcohol spectrum disorders (FASD). Due to the high prevalence of FASD and FAS and no effective treatment, it is essential to develop preventive strategies. Recent studies have investigated the potential protective effect of curcumin against ethanol-induced malformation in animal models.</div><div>This study aimed to examine whether curcumin can reduce the toxic effects of ethanol in zebrafish embryos. The present study showed that pure curcumin applied together with 1.5 % ethanol (<em>v</em>/v) did not lead to a protective effect on ethanol-induced malformations such as disturbances of body length and width or pericardia oedema in growing zebrafish embryos. Moreover, curcumin extract showed a pro-oxidant effect in the Fenton reaction in the presence of ethanol.</div></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"101 ","pages":"Article 105951"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324001814","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Curcumin, a natural polyphenol found in the turmeric plant, has been shown to have anti-inflammatory and antioxidant properties. It has been widely studied for its potential protective effect against various health conditions, including ethanol-induced malformation.
Ethanol exposure during pregnancy can lead to various developmental abnormalities, known as fetal alcohol syndrome (FAS) and fetal alcohol spectrum disorders (FASD). Due to the high prevalence of FASD and FAS and no effective treatment, it is essential to develop preventive strategies. Recent studies have investigated the potential protective effect of curcumin against ethanol-induced malformation in animal models.
This study aimed to examine whether curcumin can reduce the toxic effects of ethanol in zebrafish embryos. The present study showed that pure curcumin applied together with 1.5 % ethanol (v/v) did not lead to a protective effect on ethanol-induced malformations such as disturbances of body length and width or pericardia oedema in growing zebrafish embryos. Moreover, curcumin extract showed a pro-oxidant effect in the Fenton reaction in the presence of ethanol.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.