Blaine D Griffen, Lexanne Klimes, Laura S Fletcher, Nicole M Thometz
{"title":"Data needs for sea otter bioenergetics modeling.","authors":"Blaine D Griffen, Lexanne Klimes, Laura S Fletcher, Nicole M Thometz","doi":"10.1093/conphys/coae067","DOIUrl":null,"url":null,"abstract":"<p><p>Sea otters are keystone predators whose recovery and expansion from historical exploitation throughout their range can serve to enhance local biodiversity, promote community stability, and buffer against habitat loss in nearshore marine systems. Bioenergetics models have become a useful tool in conservation and management efforts of marine mammals generally, yet no bioenergetics model exists for sea otters. Previous research provides abundant data that can be used to develop bioenergetics models for this species, yet important data gaps remain. Here we review the available data that could inform a bioenergetics model, and point to specific open questions that could be answered to more fully inform such an effort. These data gaps include quantifying energy intake through foraging by females with different aged pups in different quality habitats, the influence of body size on energy intake through foraging, and determining the level of fat storage that is possible in sea otters of different body sizes. The more completely we fill these data gaps, the more confidence we can have in the results and predictions produced by future bioenergetics modeling efforts for this species.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae067"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465142/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coae067","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Sea otters are keystone predators whose recovery and expansion from historical exploitation throughout their range can serve to enhance local biodiversity, promote community stability, and buffer against habitat loss in nearshore marine systems. Bioenergetics models have become a useful tool in conservation and management efforts of marine mammals generally, yet no bioenergetics model exists for sea otters. Previous research provides abundant data that can be used to develop bioenergetics models for this species, yet important data gaps remain. Here we review the available data that could inform a bioenergetics model, and point to specific open questions that could be answered to more fully inform such an effort. These data gaps include quantifying energy intake through foraging by females with different aged pups in different quality habitats, the influence of body size on energy intake through foraging, and determining the level of fat storage that is possible in sea otters of different body sizes. The more completely we fill these data gaps, the more confidence we can have in the results and predictions produced by future bioenergetics modeling efforts for this species.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.