Manoela V Fogaça, Fernanda Daher, Marina R Picciotto
{"title":"Effects of ketamine on GABAergic and glutamatergic activity in the mPFC: biphasic recruitment of GABA function in antidepressant-like responses.","authors":"Manoela V Fogaça, Fernanda Daher, Marina R Picciotto","doi":"10.1038/s41386-024-02002-1","DOIUrl":null,"url":null,"abstract":"<p><p>Major depressive disorder (MDD) is associated with disruptions in glutamatergic and GABAergic activity in the medial prefrontal cortex (mPFC), leading to altered synaptic formation and function. Low doses of ketamine rapidly rescue these deficits, inducing fast and sustained antidepressant effects. While it is suggested that ketamine produces a rapid glutamatergic enhancement in the mPFC, the temporal dynamics and the involvement of GABA interneurons in its sustained effects remain unclear. Using simultaneous photometry recordings of calcium activity in mPFC pyramidal and GABA neurons, as well as chemogenetic approaches in Gad1-Cre mice, we explored the hypothesis that initial effects of ketamine on glutamate signaling trigger subsequent enhancement of GABAergic responses, contributing to its sustained antidepressant responses. Calcium recordings revealed a biphasic effect of ketamine on activity of mPFC GABA neurons, characterized by an initial transient decrease (phase 1, <30 min) followed by an increase (phase 2, >60 min), in parallel with a transient increase in excitation/inhibition levels (10 min) and lasting enhancement of glutamatergic activity (30-120 min). Previous administration of ketamine enhanced GABA neuron activity during the sucrose splash test (SUST) and novelty suppressed feeding test (NSFT), 24 h and 72 h post-treatment, respectively. Chemogenetic inhibition of GABA interneurons during the surge of GABAergic activity (phase 2), or immediately before the SUST or NSFT, occluded ketamine's behavioral actions. These results indicate that time-dependent modulation of GABAergic activity is required for the sustained antidepressant-like responses induced by ketamine, suggesting that approaches to enhance GABAergic plasticity and function are promising therapeutic targets for antidepressant development.</p>","PeriodicalId":19143,"journal":{"name":"Neuropsychopharmacology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41386-024-02002-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Major depressive disorder (MDD) is associated with disruptions in glutamatergic and GABAergic activity in the medial prefrontal cortex (mPFC), leading to altered synaptic formation and function. Low doses of ketamine rapidly rescue these deficits, inducing fast and sustained antidepressant effects. While it is suggested that ketamine produces a rapid glutamatergic enhancement in the mPFC, the temporal dynamics and the involvement of GABA interneurons in its sustained effects remain unclear. Using simultaneous photometry recordings of calcium activity in mPFC pyramidal and GABA neurons, as well as chemogenetic approaches in Gad1-Cre mice, we explored the hypothesis that initial effects of ketamine on glutamate signaling trigger subsequent enhancement of GABAergic responses, contributing to its sustained antidepressant responses. Calcium recordings revealed a biphasic effect of ketamine on activity of mPFC GABA neurons, characterized by an initial transient decrease (phase 1, <30 min) followed by an increase (phase 2, >60 min), in parallel with a transient increase in excitation/inhibition levels (10 min) and lasting enhancement of glutamatergic activity (30-120 min). Previous administration of ketamine enhanced GABA neuron activity during the sucrose splash test (SUST) and novelty suppressed feeding test (NSFT), 24 h and 72 h post-treatment, respectively. Chemogenetic inhibition of GABA interneurons during the surge of GABAergic activity (phase 2), or immediately before the SUST or NSFT, occluded ketamine's behavioral actions. These results indicate that time-dependent modulation of GABAergic activity is required for the sustained antidepressant-like responses induced by ketamine, suggesting that approaches to enhance GABAergic plasticity and function are promising therapeutic targets for antidepressant development.
期刊介绍:
Neuropsychopharmacology is a reputable international scientific journal that serves as the official publication of the American College of Neuropsychopharmacology (ACNP). The journal's primary focus is on research that enhances our knowledge of the brain and behavior, with a particular emphasis on the molecular, cellular, physiological, and psychological aspects of substances that affect the central nervous system (CNS). It also aims to identify new molecular targets for the development of future drugs.
The journal prioritizes original research reports, but it also welcomes mini-reviews and perspectives, which are often solicited by the editorial office. These types of articles provide valuable insights and syntheses of current research trends and future directions in the field of neuroscience and pharmacology.