Chaperone-mediated autophagy modulates Snail protein stability: implications for breast cancer metastasis.

IF 27.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ki-Jun Ryu, Ki Won Lee, Seung-Ho Park, Taeyoung Kim, Keun-Seok Hong, Hyemin Kim, Minju Kim, Dong Woo Ok, Gu Neut Bom Kwon, Young-Jun Park, Hyuk-Kwon Kwon, Cheol Hwangbo, Kwang Dong Kim, J Eugene Lee, Jiyun Yoo
{"title":"Chaperone-mediated autophagy modulates Snail protein stability: implications for breast cancer metastasis.","authors":"Ki-Jun Ryu, Ki Won Lee, Seung-Ho Park, Taeyoung Kim, Keun-Seok Hong, Hyemin Kim, Minju Kim, Dong Woo Ok, Gu Neut Bom Kwon, Young-Jun Park, Hyuk-Kwon Kwon, Cheol Hwangbo, Kwang Dong Kim, J Eugene Lee, Jiyun Yoo","doi":"10.1186/s12943-024-02138-0","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer remains a significant health concern, with triple-negative breast cancer (TNBC) being an aggressive subtype with poor prognosis. Epithelial-mesenchymal transition (EMT) is important in early-stage tumor to invasive malignancy progression. Snail, a central EMT component, is tightly regulated and may be subjected to proteasomal degradation. We report a novel proteasomal independent pathway involving chaperone-mediated autophagy (CMA) in Snail degradation, mediated via its cytosolic interaction with HSC70 and lysosomal targeting, which prevented its accumulation in luminal-type breast cancer cells. Conversely, Snail predominantly localized to the nucleus, thus evading CMA-mediated degradation in TNBC cells. Starvation-induced CMA activation downregulated Snail in TNBC cells by promoting cytoplasmic translocation. Evasion of CMA-mediated Snail degradation induced EMT, and enhanced metastatic potential of luminal-type breast cancer cells. Our findings elucidate a previously unrecognized role of CMA in Snail regulation, highlight its significance in breast cancer, and provide a potential therapeutic target for clinical interventions.</p>","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":27.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-024-02138-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer remains a significant health concern, with triple-negative breast cancer (TNBC) being an aggressive subtype with poor prognosis. Epithelial-mesenchymal transition (EMT) is important in early-stage tumor to invasive malignancy progression. Snail, a central EMT component, is tightly regulated and may be subjected to proteasomal degradation. We report a novel proteasomal independent pathway involving chaperone-mediated autophagy (CMA) in Snail degradation, mediated via its cytosolic interaction with HSC70 and lysosomal targeting, which prevented its accumulation in luminal-type breast cancer cells. Conversely, Snail predominantly localized to the nucleus, thus evading CMA-mediated degradation in TNBC cells. Starvation-induced CMA activation downregulated Snail in TNBC cells by promoting cytoplasmic translocation. Evasion of CMA-mediated Snail degradation induced EMT, and enhanced metastatic potential of luminal-type breast cancer cells. Our findings elucidate a previously unrecognized role of CMA in Snail regulation, highlight its significance in breast cancer, and provide a potential therapeutic target for clinical interventions.

伴侣介导的自噬调节蜗牛蛋白的稳定性:对乳腺癌转移的影响
乳腺癌仍然是一个重大的健康问题,其中三阴性乳腺癌(TNBC)是一种侵袭性亚型,预后较差。上皮-间质转化(EMT)在早期肿瘤向浸润性恶性肿瘤发展的过程中非常重要。蜗牛是EMT的核心成分,受到严格调控,可能会被蛋白酶体降解。我们报告了一种独立于蛋白酶体的新型蛋白酶体降解途径,该途径涉及伴侣介导的自噬(CMA),通过Snail与HSC70的胞浆相互作用和溶酶体靶向介导,阻止了Snail在腔内型乳腺癌细胞中的积累。相反,在 TNBC 细胞中,蜗牛主要定位于细胞核,从而逃避了 CMA 介导的降解。饥饿诱导的 CMA 激活可通过促进细胞质转位来下调 TNBC 细胞中的 Snail。逃避CMA介导的Snail降解会诱导EMT,并增强管腔型乳腺癌细胞的转移潜力。我们的研究结果阐明了 CMA 在蜗牛调控中的作用,强调了它在乳腺癌中的重要性,并为临床干预提供了一个潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cancer
Molecular Cancer 医学-生化与分子生物学
CiteScore
54.90
自引率
2.70%
发文量
224
审稿时长
2 months
期刊介绍: Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer. The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies. Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信